Zinc oxide (ZnO) nanostructures were synthesized through the hydrothermal method at various conditions growth times (6,7 and 8 hrs.) and a growth temperature (70, 90, and 100 ºC). The prepared ZnO nanostructure samples were described using scanning electron microscopy (SEM) and X-ray diffractometer to distinguish their surface morphologies and crystal structures. The ZnO samples were confirmed to have the same crystal type, with different densities and dimensions (diameter and length). The obtained ZnO nanostructures were used to manufacture gas sensors for NO2 gas detection. Sensing characteristics for the fabricated sensor to NO2 gas were examined at different operating temperatures (180, 200, 220, and 240) ºC with a low gas concentration of 2 ppm. Sensor fabricated at (70 ◦C and 6 hrs.) appears higher gas sensitivity (6.319) with shorter response and recovery times of 41.4 s, and 23.4 s respectively at operating temperature 220 ◦C towards NO2 gas efficiently compared with other prepared samples. This study offers cost-effectiveness and a simple method for designing and fabricating gas sensors with good sensing characteristics, making it a favorable candidate for a NO2 gas monitor at low gas concentration.
Electricity consumption for household purposes in urban areas widely affects the general urban consumption compared to other commercial and industrial uses, as household electricity consumption is affected by many factors related to the physical aspects of the residential area such as temperature, housing unit area, and coverage ratio, as well as social and economic factors such as family size and income, to reach the extent of the influence of each of the above factors on the amount of electricity consumed for residential uses, a selected sample of a residential area in the city of Baghdad was studied and a field survey conducted of the characteristics of that sample and the results analyzed and modeled statistically in relation to the amo
... Show MoreThe importance of kick tolerance in well operations has recently increased due to its implications in well design, in drilling and well control. To study a simple method for the application of kick tolerance concept in an effective way on the basis of field data, this research purpose is to improve knowledge about Kick Tolerance and represents a technical basis for the discussion on revision of standard procedure.
The objective of this work is to review and to present a methodology of determination the kick tolerance parameters using the circulation kicks tolerance concepts.
The proposed method allows to know, to evaluate and to analyze the kick tolerance problem in order to make the drilling exe
... Show MoreIn this paper, precision agriculture system is introduced based on Wireless Sensor Network (WSN). Soil moisture considered one of environment factors that effect on crop. The period of irrigation must be monitored. Neural network capable of learning the behavior of the agricultural soil in absence of mathematical model. This paper introduced modified type of neural network that is known as Spiking Neural Network (SNN). In this work, the precision agriculture system is modeled, contains two SNNs which have been identified off-line based on logged data, one of these SNNs represents the monitor that located at sink where the period of irrigation is calculated and the other represents the soil. In addition, to reduce p
... Show MoreI
In this study, optical fibers were designed and implemented as a chemical sensor based on surface plasmon resonance (SPR) to estimate the age of the oil used in electrical transformers. The study depends on the refractive indices of the oil. The sensor was created by embedding the center portion of the optical fiber in a resin block, followed by polishing, and tapering to create the optical fiber sensor. The tapering time was 50 min. The multi-mode optical fiber was coated with 60 nm thickness gold metal. The deposition length was 4 cm. The sensor's resonance wavelength was 415 nm. The primary sensor parameters were calculated, including sensitivity (6.25), signal-to-noise ratio (2.38), figure of merit (4.88), and accuracy (3.2)
... Show MoreA gliding arc discharge (GAD) with a water spray system was constructed. A non-thermal plasma, generated between two V shaped electrodes in an ambient argon driven by 100 Hz AC voltage, was investigated using optical emission spectroscopy (OES) with different gas flow rates (0.5, 1, 1.5, 2 , 2.5 , 3 1/min). Boltzmann plot method was used to calculate electron temperature (Te) and electron density (ne). The electrodes design was spectrally recognized and its Te value was about 0.588-0.863 eV, while the ne value of 6.875×1017-10.938×1017 cm-3. The results of the plasma diagnostics generated by gliding arc showed that increasing gas f
... Show MoreIn the present work, the effect of size of zinc dust particles on
AC argon discharge characteristics are investigated
experimentally. The plasma characteristics are determined by
using optical emission spectroscopy (OES) techniques. The
results illustrated that the electron temperature (Te) in the present
and absent of Zinc dust particle is reduced with increasing of
pressure. The electron temperature decreases with increasing of
Zinc dust size. Excitation temperature Tex is reduces with
increasing of Ar pressure in present and absent of zinc dust
particles. The present of Zinc dust reduce the Tex of Ar in both
Zinc dust size. The electron density increasing in the present and
absent of both zinc dust siz
A potential alternative energy resource to meet energy demands is the vast amount of gas stored in hydrate reserves. However, major challenges in terms of exploration and production surround profitable and effective exploitation of these reserves. The measurement of acoustic velocity is a useful method for exploration of gas hydrate reserves and can be an efficient method to characterize the hydrate-bearing sediments. In this study, the compressional wave velocity (P-wave velocity) of consolidated sediments (Bentheimer) with and without tetrahydrofuran hydrate-bearing pore fillings were measured using the pulse transmission method. The study has found that the P-wave velocity of consolidated sediments increase with increasing hydrate format
... Show MoreA progressive increase in the desire for environmentally friendly lubricants by users and strict government regulations for the use of these lubricants has provided an opportunity to use plant oils as biodegradable lubricants, therefore vegetable oils have been investigated to replace oil lubricants because of their maintaining the conditions of nature (environment) properties. In this paper, the influences of the blending ratio of mustard seeds oil with commercial mineral oil (SAE40) on the tribological characteristics were investigated and compared with mineral oil using the four-ball tribotester. Mustard seeds oil was blended with mineral oil at a volumetric ratio ranging from 22.5 to 90%. All experimental works were
... Show MoreIn this present paper, an experimental study of some plasma characteristics in dielectric barrier discharge (DBD) system using several variables, such as different frequencies and using two different electrodes metals(aluminium (Al) and copper (Cu)), is represented. The discharge plasma was produced by an AC power supply source of 6 and 7 kHz frequencies for the nitrogen gas spectrum and for two different electrodes metals(Al and Cu). Optical emission spectrometer was used to study plasma properties (such as electron temperature ( ), electron number density ( ), Debye length ( ), and plasma frequency ( )). In addition, images were analysed for the plasma emission intensity at atmospheric air pressure.
Nanofluids (dispersion of nanoparticles in a base fluid) have been suggested as promising agents in subsurface industries including enhanced oil recovery. Nanoparticles can easily pass through small pore throats in reservoirs formations; however, physicochemical interactions between nanoparticles and between nanoparticles and rocks can cause a significant retention of nanoparticles. This study investigated the transport, attach, and retention of silica nanoparticles in core plugs. The hydrophilic silica nanoparticles were injected into limestone core as nanofluid of different nanoparticles size (5 nm, and 20 nm), concentration (0.005 – 0.1 wt% SiO2), and base fluid salinity (0 – 3 wt% NaCl) at different temperatures (23, and 50 °C). D
... Show More