Zinc oxide (ZnO) nanostructures were synthesized through the hydrothermal method at various conditions growth times (6,7 and 8 hrs.) and a growth temperature (70, 90, and 100 ºC). The prepared ZnO nanostructure samples were described using scanning electron microscopy (SEM) and X-ray diffractometer to distinguish their surface morphologies and crystal structures. The ZnO samples were confirmed to have the same crystal type, with different densities and dimensions (diameter and length). The obtained ZnO nanostructures were used to manufacture gas sensors for NO2 gas detection. Sensing characteristics for the fabricated sensor to NO2 gas were examined at different operating temperatures (180, 200, 220, and 240) ºC with a low gas concentration of 2 ppm. Sensor fabricated at (70 ◦C and 6 hrs.) appears higher gas sensitivity (6.319) with shorter response and recovery times of 41.4 s, and 23.4 s respectively at operating temperature 220 ◦C towards NO2 gas efficiently compared with other prepared samples. This study offers cost-effectiveness and a simple method for designing and fabricating gas sensors with good sensing characteristics, making it a favorable candidate for a NO2 gas monitor at low gas concentration.
The lethality of inorganic arsenic (As) and the threat it poses have made the development of efficient As detection systems a vital necessity. This research work demonstrates a sensing layer made of hydrous ferric oxide (Fe2H2O4) to detect As(III) and As(V) ions in a surface plasmon resonance system. The sensor conceptualizes on the strength of Fe2H2O4 to absorb As ions and the interaction of plasmon resonance towards the changes occurring on the sensing layer. Detection sensitivity values for As(III) and As(V) were 1.083 °·ppb−1 and 0.922 °·ppb
Data centric techniques, like data aggregation via modified algorithm based on fuzzy clustering algorithm with voronoi diagram which is called modified Voronoi Fuzzy Clustering Algorithm (VFCA) is presented in this paper. In the modified algorithm, the sensed area divided into number of voronoi cells by applying voronoi diagram, these cells are clustered by a fuzzy C-means method (FCM) to reduce the transmission distance. Then an appropriate cluster head (CH) for each cluster is elected. Three parameters are used for this election process, the energy, distance between CH and its neighbor sensors and packet loss values. Furthermore, data aggregation is employed in each CH to reduce the amount of data transmission which le
... Show MoreThe advancement of digital technology has increased the deployment of wireless sensor networks (WSNs) in our daily life. However, locating sensor nodes is a challenging task in WSNs. Sensing data without an accurate location is worthless, especially in critical applications. The pioneering technique in range-free localization schemes is a sequential Monte Carlo (SMC) method, which utilizes network connectivity to estimate sensor location without additional hardware. This study presents a comprehensive survey of state-of-the-art SMC localization schemes. We present the schemes as a thematic taxonomy of localization operation in SMC. Moreover, the critical characteristics of each existing scheme are analyzed to identify its advantages
... Show MoreBackground: low back pain is one of the most common public health problems and of the most common musculoskeletal complaint. Many risk factors have been considered for developing low back pain include smoking, obesity and sedentary lifestyle.
Aim of study: To evaluate smoking, obesity, and sedentary lifestyle associations with low back pain in young adults aged (18 – 39 years).
Methods: a comparative cross sectional study for young adults aged 18 – 39 years, participants with low back pain as a symptom constitutes the first group, others free of this symptom considered as the control group. Age and gender matched in both groups. Smoking, obesity and sedentary life sty
... Show More