Zinc oxide (ZnO) nanostructures were synthesized through the hydrothermal method at various conditions growth times (6,7 and 8 hrs.) and a growth temperature (70, 90, and 100 ºC). The prepared ZnO nanostructure samples were described using scanning electron microscopy (SEM) and X-ray diffractometer to distinguish their surface morphologies and crystal structures. The ZnO samples were confirmed to have the same crystal type, with different densities and dimensions (diameter and length). The obtained ZnO nanostructures were used to manufacture gas sensors for NO2 gas detection. Sensing characteristics for the fabricated sensor to NO2 gas were examined at different operating temperatures (180, 200, 220, and 240) ºC with a low gas concentration of 2 ppm. Sensor fabricated at (70 ◦C and 6 hrs.) appears higher gas sensitivity (6.319) with shorter response and recovery times of 41.4 s, and 23.4 s respectively at operating temperature 220 ◦C towards NO2 gas efficiently compared with other prepared samples. This study offers cost-effectiveness and a simple method for designing and fabricating gas sensors with good sensing characteristics, making it a favorable candidate for a NO2 gas monitor at low gas concentration.
In this study, a proposed process for the utilization of hydrogen sulphide separated with other gases from omani natural gas for the production of sulphuric acid by wet sulphuric acid process (WSA) was studied. The processwas simulated at an acid gas feed flow of 5000 m3/hr using Aspen ONE- V7.1-HYSYS software. A sensitivity analysis was conducted to determine the optimum conditions for the operation of plant. This included primarily the threepacked bed reactors connected in series for the production of sulphur trioxidewhich represented the bottleneck of the process. The optimum feed temperature and catalyst bed volume for each reactor were estimated and then used in the simulation of the whole process for tw
... Show MoreThe ionospheric characteristics exhibit significant variations with the solar cycle, geomagnetic conditions, seasons, latitudes and even local time. Representation of this research focused on global distribution of electron (Te) and ion temperatures (Ti) during great and severe geomagnetic storms (GMS), their daily and seasonally variation for years (2001-2013), variations of electron and ion temperature during GMS with plasma velocity and geographic latitudes. Finally comparison between observed and predicted Te and Ti get from IRI model during the two kinds of storm selected. Data from satellite Defense Meteorological Satellite Program (DMSP) 850 km altitude are taken for Te, Ti and plasma velocity for different latitudes during great
... Show MoreAbstract: Background: Optical biosensors offer excellent properties and methods for detecting bacteria when compared to traditional analytical techniques. It allows direct detection of many biological and chemical materials. Bacteria are found in the human body naturally non-pathogenic and pathologically, as they are found in other living organisms. One of these bacteria is Escherichia coli (E. coli) which are found in the human body in its natural and pathogenic form. E.coli bacteria cause many diseases, including Stomach, intestines, urinary system infections, and others. The aim of this study: is sensing and differentiation between normal flora and pathogenic E.coli. Material and method:
... Show MoreA biconical antenna has been developed for ultra-wideband sensing. A wide impedance bandwidth of around 115% at bandwidth 3.73-14 GHz is achieved which shows that the proposed antenna exhibits a fairly sensitive sensor for microwave medical imaging applications. The sensor and instrumentation is used together with an improved version of delay and sum image reconstruction algorithm on both fatty and glandular breast phantoms. The relatively new imaging set-up provides robust reconstruction of complex permittivity profiles especially in glandular phantoms, producing results that are well matched to the geometries and composition of the tissues. Respectively, the signal-to-clutter and the signal-to-mean ratios of the improved method are consis
... Show MoreThis study appears GIS techniqueand remote sensing data are matching with the field observation to identify the structural features such as fault segments in the urban area such as the Merawa and Shaqlawa Cities. The use of different types of data such as fault systems, drainage patterns (previously mapped), lineament, and lithological contacts with spatial resolution of 30m was combined through a process of integration and index overlay modeling technique for producing the susceptibility map of fault segments in the study area. GIS spatial overlay technique was used to determine the spatial relationships of all the criteria (factors) and subcriteria (classes) within layers (maps) to classify and map the potential ar
... Show MoreThe main aim of this paper is to explain the effect of the aggregation accounting information on the financial, investment, and operational, managerial decision-making and the evaluation of the financial statements after aggregate. The problem of this study is represented in administrative decision-making that takes place under differentiated accounting systems operating within a governmental economic unit that seeks at the same time to achieve a unified vision and goals for the organization. This study was conducted at the College of Administration and Economics /University of Baghdad, and it represents a sample from a community of governmental economic units that apply differentiated accounting systems. The study method is repr
... Show MoreThe aim of this study is to shed light on the importance of biofuels as an alternative to conventional energy, in addition to the importance of preserving agricultural crops, which are the main source of this fuel, to maintain food security, especially in developing countries. The increase in global oil prices, in addition to the fear of global warming, are among the main factors that draw the world’s attention to searching for alternative sources of traditional energy, which are sustainable on the one hand, and on the other hand reduce carbon emissions. Therefore, the volume of global investment in renewable energy in general, and in liquid biofuels and biomass in particular, has increased. Global fears emerged that the excessive convers
... Show MoreThe research tackles the potential challenged faced the translator when dealing with the literal translation of nowadays political terms in media. Despite the universal complexity of translating political jargon, adopting literal translation introduces an added layer of intricacy. The primary aim of literal translation is to maintain faithfulness to the original text, irrespective of whether it is in English or Arabic. However, this method presents several challenges within the linguistic and cultural dimensions. Drawing upon scholarly sources, this article expounds upon the multifaceted issues that emerge from the verbatim translation of political terms from English into Arabic. These problems include political culture, language differenc
... Show MoreThe aim of this study is to shed light on the importance of biofuels as an alternative to conventional energy, in addition to the importance of preserving agricultural crops, which are the main source of this fuel, to maintain food security, especially in developing countries. The increase in global oil prices, in addition to the fear of global warming, are among the main factors that draw the world’s attention to searching for alternative sources of traditional energy, which are sustainable on the one hand, and on the other hand reduce carbon emissions. Therefore, the volume of global investment in renewable energy in general, and in liquid biofuels and biomass in particular, has increased. Global fears emerged that the excessive
... Show More