This research delves into the realm of asphalt technology, exploring the potential of nano-additives to enhance traditional asphalt binder properties. Focusing on Nano-Titanium Dioxide (NT), Nano-Aluminum Oxide (NA), and Nano-Silica Oxide (NS), this study investigates the effects of incorporating these nanomaterials at varying dosages, ranging from 0% to 8%, on the asphalt binder’s performance. This study employs a series of experimental tests, including consistency, storage stability, rotational viscosity, mass loss due to aging, and rheological properties, to assess the impact of nano-additives on asphalt binder characteristics. The findings indicate a substantial improvement in the consistency of the asphalt binder with the addition of nanomaterials, particularly NS, which shows a 41% reduction in penetration at an 8% content and a notable increase in the softening point. The storage stability tests reveal that NS-modified asphalt exhibits superior stability compared to NT and NA, with a significantly lower ΔT increase. Furthermore, the investigation into rotational viscosity suggests that NS, despite increasing the binder’s viscosity, does not exceed the AASHTO M320 threshold, ensuring the binder’s workability. Aging tests demonstrate that NT, at lower concentrations, acts as an effective anti-aging agent, whereas NA and NS tend to increase the mass loss, impacting thermal stability. This study concludes that while each nanomaterial uniquely influences the asphalt binder’s properties, NS stands out in terms of enhancing the high-temperature performance and storage stability. Optimal dosages of 6% for NT and NA and 4% for NS are recommended based on the Overall Desirability analysis. This research bridges the gap between traditional asphalt materials and modern requirements, highlighting the transformative impact of nano-additives in advancing asphalt pavement technology.
The research is conducted on target of investigating the role of growth strategy via diversification in value maximization of a firm in terms of controversies literatures had witnessed. Using a descriptive approach for analyzing and verifying the harmony of variables of research and their conceptualized logic , it could be reached to many conclusions agreed in their essence upon that the related diversification has the major role in value maximization of a firm and the wealth of its owners .
The current research aims to determine the relationship of the impact of the components of the financing structure, especially financing through debts, as well as the earnings per share in the value of the shares of companies listed in the Iraq Stock Exchange. The research sample and identifying the strength of the combined effect of the ratio of financing through debt and earnings per share in maximizing The market value of the firm and the real value, as well as the variation between these relationships according to model of the real value of the companies and the market value of the research sample companies. The research community is represented by the Iraq Stock Exchange, while a conditional deliberate sample
... Show MoreIt has aimed by this research at presenting new interpretations to diversification phenomenon and its possible effects on firm value. These interpretations are culminated by the disclosure of the distinct role of resource-based view in the study of relationship between diversification strategy and firm value. The study has conducted on a sample consisted of the largest American companies listed in Fortune 500 along with seven years period
(2005-2011). This first local attempt, which has based on panel dat--a analysis for interpreting an expected variance of firm value due to diversification strategy, may helps with a clear vision to solve the contradiction and confusion surrounded the true linkages between t
Porous materials play an important role in creating a sustainable environment by improving wastewater treatment's efficacy. Porous materials, including adsorbents or ion exchangers, catalysts, metal–organic frameworks, composites, carbon materials, and membranes, have widespread applications in treating wastewater and air pollution. This review examines recent developments in porous materials, focusing on their effectiveness for different wastewater pollutants. Specifically, they can treat a wide range of water contaminants, and many remove over 95% of targeted contaminants. Recent advancements include a wider range of adsorption options, heterogeneous catalysis, a new UV/H2O
This research aims to improve the radiation shielding properties of polymer-based materials by mixing PVC with locally available building materials. Specifically, two key parameters of fast neutron attenuation (removal cross-section and half-value layer) were studied for composite materials comprising PVC reinforced with common building materials (cement, sand, gypsum and marble) in different proportions (10%, 30% and 50% by weight). To assess their effectiveness as protection against fast neutrons, the macroscopic neutron cross-section was calculated for each composite. Results show that neutron cross-section values are significantly affected by the reinforcement ratios, and that the composite material PVC + 50% gypsum is an effect
... Show MoreBackground: The finite element method (FEM) is expected to be one of the most effective computational tools for measuring the stress on implant-supported restorations. This study was designed using the 3D-FEM to evaluate the effect of two adhesive luting types of cement on the occlusal stress and deformation of a hybrid crown cemented to a mono-implant. Materials and Method: The mono-screw STL file was imported into the CAD/CAM system library from a database supported by De-Tech Implant Technology. This was to assist in the accurate reproduction of details and design of a simulated implant abutment. Virtually, a digital crown was designed to be cemented on an abutment screw. A minimum occlusal thickness of 1mm and marginal fitting of 1.2
... Show MoreThis study focused on treating wastewater to remove phosphorus by adsorption onto naturaland local materials. Burned kaolin, porcelinite, bauxite and limestone were selected to be testedas adsorption materials.The adsorption isotherms were evaluated by batch experiments, studyingthe effects of pH, temperature and initial phosphorus concentration. The results showed that at pH6, temperature 20°C and 300 mg/l initial phosphorus concentration; the sorption capacity was0.61, 9, 10 and 13 mg/g at 10 h contact time, for burned kaolin, porcelanite, limestone and bauxiterespectively. As the pH increased from 2 to 10 the removal efficiency for the materials differs inbehaviour. The removal efficiency increased from 40 to 90 % for limestone, and dec
... Show MoreThis contribution evaluates the influence of Cr doping on the ground state properties of SrTiO3 Perovskite using GGA-PBE approximation. Results of the simulated model infer agreement with the previously published literature. The modification of electronic structure and optical properties due to Cr3+ doping levels in SrTiO3 has been investigated. Structural parameters infer that Cr3+ doping alters the electronic structures of SrTiO3 by shifting the conduction band through lower energies for the Sr and Ti sites. Substituting Ti site by Cr3+ results the energy gap in being eliminated revealing a new electrical case of conducting material for the system. Furthermore, it has been noticed that Cr doping either at Sr or Ti positions could effectiv
... Show MoreTested effective Alttafaria some materials used for different purposes, system a bacterial mutagenesis component of three bacterial isolates belonging to different races and materials tested included drug Briaktin