Lasers, with their unique characteristics in terms of excellent beam quality, especially directionality and coherency, make them the solution that is key for many processes that require high precision. Lasers have good susceptibility to integrate with automated systems, which provides high flexibility to reach difficult zones. In addition, as a processing tool, a laser can be considered as a contact-free tool of precise tip that became attractive for high precision machining at the micro and nanoscales for different materials. All of the above advantages may be not enough unless the laser technician/engineer has enough knowledge about the mechanism of interaction between the laser light with the processed material. Several sequential phenomena occur when an intense laser beam is incident on the surface of a material. Heating, melting, vaporization and plasma formation are present in the normal interaction of an intense laser beam with matter. This may be followed by additional events such as acoustic and optical emissions, structure shockwaves, thermal effects, structural defects and residual stresses. The process is affected by a lot of variables that can transfer the interaction towards extremely different behavior in terms of colder and fewer side-effect interactions, which yield precise features for the processed material. The most crucial variables are the time scale of interaction and laser wavelength with respect to the properties of the processed material undertaken as well as the laser fluence. The objective of this chapter is to introduce the fundamentals of physical and mathematical concepts of laser and matter interaction and its dependency on different time scale regimes. Interaction with a short and ultra-short laser pulse has attracted a significant amount of interest in industry due to its huge impact in micro-/nanomachining applications.
A fast laser texturing technique has been utilized to produce micro/nano surface textures in Silicon by means of UV femtosecond laser. We have prepared good absorber surface for photovoltaic cells. The textured Silicon surface absorbs the incident light greater than the non-textured surface. The results show a photovoltaic current increase about 21.3% for photovoltaic cell with two-dimensional pattern as compared to the same cell without texturing.
Background: One common undesirable side effect of orthodontic treatment with fixed appliances is the development of incipient caries lesions around brackets, particularly in patients with poor oral hygiene. Different methods have been used to prevent demineralization; the recent effort to improve the resistance against the demineralization is by the application of lasers. Materials and method: Thirty human premolars extracted for orthodontic purposes were used to test the effect of two energy level of ER-YAG laser on enamel resistance to demineralization. The brackets were bonded on the teeth and all the labial surface excluding 2 mm area gingival to the brackets were painted with acid resistance varnish. Three groups were generated. The fi
... Show MoreDental caries (tooth decay) is one of the most prevalent infectious disease and although of multifactorial origin, Streptococcus mutans is considered the principal pathogen in its development (i.e. bacterial processes damage hard tooth structure (enamel, dentine and cementum), producing dental cavities (holes in the teeth). The bactericidal properties of the Nd:YAG laser has been researched analyzing its use in caries prevention and bacterial reduction. One hundred twenty five samples were collected from carious teeth and isolated bacteria were diagnosed using microscopic examination, culture, biochemical tests, and Api 20 strep system. The results of this study showed that a noticeable decrease in the viability of Streptococcus mutans w
... Show MorePulsed liquid laser ablation is considered a green method for the synthesis of nanostructures because there are no byproducts formed after the ablation. In this paper, a fiber laser of wavelength 1.064 µm, peak power of 1 mJ, pulse duration of 120 ns, and repetition rate of 20 kHz, was used to produce carbon nanostructures including carbon nanospheres and carbon nanorods from the ablation of asphalt in ethanol at ablation speeds of (100, 75, 50, 10 mm/s). The morphology, composition and optical properties of the synthesized samples were studied experimentally using FESEM, HRTEM, EDS, and UV-vis spectrophotometer. Results showed that the band gap energy decreased with decreasing the ablation speed (increasing the ablation time), the mi
... Show MoreIn this study, the effect of Nd: YAG laser on the activity of superoxide dismutase (SOD) and alcoholdehydrogenase (ADH) was investigated. The Saccharomyces cells were irradiated using 532nm Q-Switched Nd: YAG laser with (1Hz) frequency. Different fluences 11.3, 22.6 and 33.9mJ/cm2 and different number of pulses 15, 30 and 60 pulse were used. The irradiated cells were incubated in a liquid nutritive medium for 24 hours. After incubation, the cells were harvested and disrupted to extract the intracellular enzymes and their activities were assessed. In comparison with the control, the irradiated cells showed a significant increase in the activity and the specific activity of SOD at energy densities of 11.3 and 22.6mJ/cm2 at 30 and 60 pulses
... Show MoreElectrochemical Machining is a term given to one of nontraditional machining that uses a chemical reaction associated with electric current to remove the material. The process is depending on the principle of anodic dissolution theory for evaluating material removal during electrochemical process. In this study, the electrochemical machining was used to remove 1 mm from the length of the a workpiece (stainless steel 316 H) by immersing it in to electrolyte (10, 20 and 30 g) of NaCl and Na2SO4 to every (1 litter of filtered water). The tool used was made from copper. Gap size between the workpiece and electrode is (0.5) mm. This study focuses on the effect of the changing the type and concentration of electroly
... Show MoreThis work aimed to study the effect of laser surface treatment on the mechanical characteristics and corrosion behaviour of grey cast iron type A159. Many technical applications used conventional surface treatment, but laser surface hardening has recently been used to enhance the surface properties of many alloys. The mechanical characteristics, including microstructure, microhardness, and wear resistance of A159 grey cast iron, were studied, in addition to corrosion behaviour. The experimental laser parameters in this work were 0.9, 1.2, and 1.5 KW power with continuous wave carbon dioxide lasers with scanning speeds of 10 and 12 mm/s were used. The results found that phase-transitional alterations in microstructure were influenced by lase
... Show MoreIn this study, doped thin cadmium peroxide films were prepared by pulsed laser deposition with different doping concentrations of aluminium of 0.0, 0.1, 0.3, and 0.5 wt.% for CdO2(1-X)Al(X) and thicknesses in the range of 200 nm. XRD patterns suggest the presence of cubic CdO2 and the texture factor confirms that the (111) plane was the preferential growth plane, where the texture factor and the grain size decreased from 2.02 to 9.75 nm, respectively, in the pure sample to 1.88 and 5.65 nm, respectively, at a concentration of 0.5 wt%. For the predominant growth plane, the deviation of the diffraction angle Δθ and interplanar distance Δd from the standard magnitudes was 2.774° and 0.318 Å, respectively, for the pure sample decreased to
... Show More