Preferred Language
Articles
/
eReaCpEBVTCNdQwCrJJ7
Physical principles of laser–material interaction regimes for laser machining processes
...Show More Authors

Lasers, with their unique characteristics in terms of excellent beam quality, especially directionality and coherency, make them the solution that is key for many processes that require high precision. Lasers have good susceptibility to integrate with automated systems, which provides high flexibility to reach difficult zones. In addition, as a processing tool, a laser can be considered as a contact-free tool of precise tip that became attractive for high precision machining at the micro and nanoscales for different materials. All of the above advantages may be not enough unless the laser technician/engineer has enough knowledge about the mechanism of interaction between the laser light with the processed material. Several sequential phenomena occur when an intense laser beam is incident on the surface of a material. Heating, melting, vaporization and plasma formation are present in the normal interaction of an intense laser beam with matter. This may be followed by additional events such as acoustic and optical emissions, structure shockwaves, thermal effects, structural defects and residual stresses. The process is affected by a lot of variables that can transfer the interaction towards extremely different behavior in terms of colder and fewer side-effect interactions, which yield precise features for the processed material. The most crucial variables are the time scale of interaction and laser wavelength with respect to the properties of the processed material undertaken as well as the laser fluence. The objective of this chapter is to introduce the fundamentals of physical and mathematical concepts of laser and matter interaction and its dependency on different time scale regimes. Interaction with a short and ultra-short laser pulse has attracted a significant amount of interest in industry due to its huge impact in micro-/nanomachining applications.

Crossref
View Publication
Publication Date
Tue Sep 01 2020
Journal Name
Al-khwarizmi Engineering Journal
Prediction of Creep-Fatigue Interaction Damage for Polyamide 6,6 Composites
...Show More Authors

    This paper aims to study the damage generated due to creep-fatigue interaction behaviors in solid polyamide 6,6 and its composites that include 1%wt of carbon nanotubes or 30% wt short carbon fiber prepared by an injection technique. The investigation also includes studying the influence of applied temperatures higher than the glass transition temperatures on mechanical properties. The obtained results showed that the addition of reinforcement materials increased all the mechanical properties, while the increase in test temperature reduced all mechanical properties, especially for polyamide 6,6. The creep-fatigue interaction resistance also improved due to the addition of reinforcement materials by inc

... Show More
View Publication Preview PDF
Publication Date
Thu Oct 01 2009
Journal Name
2009 Ieee Symposium On Industrial Electronics & Applications
Assessing combinatorial interaction strategy for reverse engineering of combinational circuits
...Show More Authors

View Publication
Scopus (9)
Crossref (8)
Scopus Crossref
Publication Date
Mon Feb 28 2022
Journal Name
Journal Of Educational And Psychological Researches
The Impact of the Strategy of Cooperative Integration of Fragmented Information in the Acquisition of Physical Concepts and Science Processes among Fourth Scientific Students
...Show More Authors

The current research aims to reveal the impact of the strategy of cooperative integration of fragmented information in the acquisition of physical concepts and science processes among fourth scientific students through the null hypotheses:

1- There is no statistically significant difference at the level of significance (0.05) between the average grades of female students of the experimental group studying physics according to the strategy of cooperative integration of fragmented information and those who follow the traditional method in the test of acquiring physical concepts.

2-There is no statistically significant difference at the level of indication (0.05) between the average grades of female students of the experimen

... Show More
View Publication Preview PDF
Publication Date
Fri Feb 08 2019
Journal Name
Iraqi Journal Of Laser
Human Skin WoundWelding Using 980 nm Diode Laser: an in Vitro Experimental Study
...Show More Authors

Laser assisted skin wound closure offers many distinct advantages over conventional closure
techniques. The objective of this in vitro experimental study, carried out at the Institute of Laser for
Postgraduate Studies/Baghdad University, was to determine the effectiveness of 980 nm diode laser in
welding of human skin wounds. Multiple 3-4 cm long full thickness incisions in a specimen of human
skin obtained from the discarded panniculus of an Abdominoplasty operation were tried to be laser
welded using a 4 mm spot diameter laser beam from a 980 nm diode laser at different laser parameters
and modes of action. The tensile strength at the weld site was analyzed experimentally. Although laser
assisted wound welding did

... Show More
View Publication Preview PDF
Publication Date
Fri Feb 08 2019
Journal Name
Iraqi Journal Of Laser
Urinary Tract Stones Fragmentation using (2100 nm) Holmium: YAG Laser: (In vitro Analysis)
...Show More Authors

Urinary stones are one of the most common painful disorders of the urinary system. Four new technologies have transformed the treatment of urinary stones: Electrohydraulic lithotripsy, ultrasonic lithotripsy, extracorporeal shock wave lithotripsy, and laser lithotripsy.The purpose of this study is to determine whether pulsed holmium laser energy is an effective method for fragmenting urinary tract stones in vitro, and to determine whether stone composition affects the efficacy of holmium laser lithotripsy. Human urinary stones of known composition with different sizes, shapes and colors were used for this study. The weight and the size of each stone were measured. The surgical laser system which used in our study is Ho:YAG laser(2100nm)

... Show More
View Publication Preview PDF
Publication Date
Mon Nov 06 2017
Journal Name
International Conference On Technologies And Materials For Renewable Energy, Environment And Sustainability, Tmrees17, 21-24 April 2017, Beirut Lebanon
HgBa2 Can-1CunO2n+2+δ Superconducting thin films Prepared by Pulsed Laser Deposition
...Show More Authors

In the present work, HgBa2Can-1CunO2n+2+δ superconducting thin films with (100) nm thickness were (n=1, 2 and 3) prepared by Pulsed Laser Deposition technique on glass substrate at R.T (300) K, have been synthesize. The effect of Cu content on the structural, surface morphology, optical and electrical properties of HgBa2Can-1CunO2n+2+δ films were investigated and analyzed. The results of XRD analysis show that all samples are polycrystalline structure with orthorhombic phase, the change of Cu concentration in samples produce changes in the mass density, lattice parameter and the ratio (c/a). AFM techniques were used to examine the surface morphology of HgBa2Can-1CunO2n+2+δ superconducting films, the study showed the values of surface rou

... Show More
Publication Date
Thu Jun 01 2023
Journal Name
Journal Of Engineering
On the Laser Micro Cutting: Experimentation and Mathematical Modeling based on RSM-CCD
...Show More Authors

The laser micro-cutting process is the most widely commonly applied machining process which can be applied to practically all metallic and non-metallic materials. While this had challenges in cutting quality criteria such as geometrical precision, surface quality and numerous others. This article investigates the laser micro-cutting of PEEK composite material using nano-fiber laser, due to their significant importunity and efficiency of laser in various manufacturing processes. Design of experiential tool based on Response Surface Methodology (RSM)-Central Composite Design (CCD) used to generate the statistical model. This method was employed to analysis the influence of parameters including laser speed,

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jan 01 2015
Journal Name
International Journal Of Advanced Research
UV Photovoltaic detector based on Bi doped TiO2 Fabricated by Pulse Laser Deposition
...Show More Authors

Pure and doped TiO 2 with Bi films are obtained by pulse laser deposition technique at RT under vacume 10-3 mbar, and the influence of Bi content on the photocvoltaic properties of TiO 2 hetrojunctions is studied. All the films display photovoltaic in the near visible region. A broad double peaks are observed around λ= 300nm for pure TiO 2 at RT in the spectral response of the photocurrent, which corresponds approximately to the absorption edge and this peak shift to higher wavelength (600 nm) when Bi content increase by 7% then decrease by 9%. The result is confirmed with the decreasing of the energy gap in optical properties. Also, the increasing is due to an increase in the amount of Bi content, and shifted to 400nm when annealed at 523

... Show More
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
Study affects Pulse Parameters versus cavity length for both Dispersion Regimes in FM mode locked.: Bushra.R.Mhdi|Gaillan H.Abdullah|Mohand M.Azzawi|Nahla.A.Hessin|Basher.R.Mhdi
...Show More Authors

To demonstrate the effect of changing cavity length for FM mode locked on pulse parameters and make comparison for both dispersion regime , a plot for each pulse parameter as Lr function are presented for normal and anomalous dispersion regimes . The analysis is based on the theoretical study and the results of numerical simulation using MATLAB. The effect of both normal and anomalous dispersion regimes on output pulses is investigate Fiber length effects on pulse parameters are investigated by driving the modulator into different values. A numerical solution for model equations using fourth-fifth order, Runge-Kutta method is performed through MATLAB 7.0 program. Fiber length effect on pulse parameters is investigated by driving th

... Show More
View Publication
Crossref
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
1-DOF Model for Fluid-Structure-Interaction Vibration Analysis
...Show More Authors

In this paper an attempt to provide a single degree of freedom lumped model for fluid structure interaction (FSI) dynamical analysis will be presented. The model can be used to clarify some important concept in the FSI dynamics such as the added mass, added stiffness, added damping, wave coupling ,influence mass coefficient and critical fluid depth . The numerical results of the model show that the natural frequency decrease with the increasing of many parameters related to the structure and the fluid .It is found that the interaction phenomena can become weak or strong depending on the depth of the containing fluid .The damped and un damped free response are plotted in time domain and phase plane for different model parameters It is fou

... Show More
View Publication Preview PDF
Crossref