Lasers, with their unique characteristics in terms of excellent beam quality, especially directionality and coherency, make them the solution that is key for many processes that require high precision. Lasers have good susceptibility to integrate with automated systems, which provides high flexibility to reach difficult zones. In addition, as a processing tool, a laser can be considered as a contact-free tool of precise tip that became attractive for high precision machining at the micro and nanoscales for different materials. All of the above advantages may be not enough unless the laser technician/engineer has enough knowledge about the mechanism of interaction between the laser light with the processed material. Several sequential phenomena occur when an intense laser beam is incident on the surface of a material. Heating, melting, vaporization and plasma formation are present in the normal interaction of an intense laser beam with matter. This may be followed by additional events such as acoustic and optical emissions, structure shockwaves, thermal effects, structural defects and residual stresses. The process is affected by a lot of variables that can transfer the interaction towards extremely different behavior in terms of colder and fewer side-effect interactions, which yield precise features for the processed material. The most crucial variables are the time scale of interaction and laser wavelength with respect to the properties of the processed material undertaken as well as the laser fluence. The objective of this chapter is to introduce the fundamentals of physical and mathematical concepts of laser and matter interaction and its dependency on different time scale regimes. Interaction with a short and ultra-short laser pulse has attracted a significant amount of interest in industry due to its huge impact in micro-/nanomachining applications.
Background: During Ramadan, Muslims fast throughout daylight hours. There is a direct link between fasting and increasing incidence of infections. Antibiotic usage for treatment of infections should be based on accurate diagnosis, with the correct dose and dosing regimen for the shortest period to avoid bacterial resistance. This study aimed to evaluate the practices of physicians in prescribing suitable antibiotics for fasting patients and the compliance of the patients in using such antibiotics at regular intervals. Materials and methods: An observational study was carried out during the middle 10 days of Ramadan 2014 in two pharmacies at Baghdad. A total of 34 prescriptions (Rx) for adults who suffered from infections were examined. For
... Show MoreAs they are the smallest functional parts of the muscle, motor units (MUs) are considered as the basic building blocks of the neuromuscular system. Monitoring MU recruitment, de-recruitment, and firing rate (by either invasive or surface techniques) leads to the understanding of motor control strategies and of their pathological alterations. EMG signal decomposition is the process of identification and classification of individual motor unit action potentials (MUAPs) in the interference pattern detected with either intramuscular or surface electrodes. Signal processing techniques were used in EMG signal decomposition to understand fundamental and physiological issues. Many techniques have been developed to decompose intramuscularly detec
... Show MoreGeneral propositions have dealt with various indicators and features that frame and describe basic architectural concepts, and from those concepts, the concept of identity will be presented here, which represents the nerve of intellectual vision of the state of architecture development, transformation and change. Due to its deep intellectual basis, it was necessary to study multiple features, especially the achievement feature that was considered a major stage describing the nature of change and shift related to the achievement of concept and its role in the development of the architectural field . &nb
... Show MoreThis paper presents a robust control method for the trajectory control of the robotic manipulator. The standard Computed Torque Control (CTC) is an important method in the robotic control systems but its not robust to system uncertainty and external disturbance. The proposed method overcome the system uncertainty and external disturbance problems. In this paper, a robustification term has been added to the standard CTC. The stability of the proposed control method is approved by the Lyapunov stability theorem. The performance of the presented controller is tested by MATLAB-Simulink environment and is compared with different control methods to illustrate its robustness and performance.
Alongside the development of high-speed rail, rail flaw detection is of great importance to ensure railway safety, especially for improving the speed and load of the train. Several conventional inspection methods such as visual, acoustic, and electromagnetic inspection have been introduced in the past. However, these methods have several challenges in terms of detection speed and accuracy. Combined inspection methods have emerged as a promising approach to overcome these limitations. Nondestructive testing (NDT) techniques in conjunction with artificial intelligence approaches have tremendous potential and viability because it is highly possible to improve the detection accuracy which has been proven in various conventional nondestr
... Show MoreThe purpose of this paper is to solve the stochastic demand for the unbalanced transport problem using heuristic algorithms to obtain the optimum solution, by minimizing the costs of transporting the gasoline product for the Oil Products Distribution Company of the Iraqi Ministry of Oil. The most important conclusions that were reached are the results prove the possibility of solving the random transportation problem when the demand is uncertain by the stochastic programming model. The most obvious finding to emerge from this work is that the genetic algorithm was able to address the problems of unbalanced transport, And the possibility of applying the model approved by the oil products distribution company in the Iraqi Ministry of Oil to m
... Show MoreIn this paper, new approach based on coupled Laplace transformation with decomposition method is proposed to solve type of partial differential equation. Then it’s used to find the accurate solution for heat equation with initial conditions. Four examples introduced to illustrate the accuracy, efficiency of suggested method. The practical results show the importance of suggested method for solve differential equations with high accuracy and easy implemented.
The Artificial Neural Network methodology is a very important & new subjects that build's the models for Analyzing, Data Evaluation, Forecasting & Controlling without depending on an old model or classic statistic method that describe the behavior of statistic phenomenon, the methodology works by simulating the data to reach a robust optimum model that represent the statistic phenomenon & we can use the model in any time & states, we used the Box-Jenkins (ARMAX) approach for comparing, in this paper depends on the received power to build a robust model for forecasting, analyzing & controlling in the sod power, the received power come from
... Show MoreIn this research we solved numerically Boltzmann transport equation in order to calculate the transport parameters, such as, drift velocity, W, D/? (ratio of diffusion coefficient to the mobility) and momentum transfer collision frequency ?m, for purpose of determination of magnetic drift velocity WM and magnetic deflection coefficient ? for low energy electrons, that moves in the electric field E, crossed with magnetic field B, i.e; E×B, in the nitrogen, Argon, Helium and it's gases mixtures as a function of: E/N (ratio of electric field strength to the number density of gas), E/P300 (ratio of electric field strength to the gas pressure) and D/? which covered a different ranges for E/P300 at temperatures 300°k (Kelvin). The results show
... Show More