The physical behavior for the energy distribution function (EDF) of the reactant particles depending upon the gases (fuel) temperature are completely described by a physical model covering the global formulas controlling the EDF profile. Results about the energy distribution for the reactant system indicate a standard EDF, in which it’s arrive a steady state form shape and intern lead to fix the optimum selected temperature.
Fingerprints are commonly utilized as a key technique and for personal recognition and in identification systems for personal security affairs. The most widely used fingerprint systems utilizing the distribution of minutiae points for fingerprint matching and representation. These techniques become unsuccessful when partial fingerprint images are capture, or the finger ridges suffer from lot of cuts or injuries or skin sickness. This paper suggests a fingerprint recognition technique which utilizes the local features for fingerprint representation and matching. The adopted local features have determined using Haar wavelet subbands. The system was tested experimentally using FVC2004 databases, which consists of four datasets, each set holds
... Show MoreImage fusion is one of the most important techniques in digital image processing, includes the development of software to make the integration of multiple sets of data for the same location; It is one of the new fields adopted in solve the problems of the digital image, and produce high-quality images contains on more information for the purposes of interpretation, classification, segmentation and compression, etc. In this research, there is a solution of problems faced by different digital images such as multi focus images through a simulation process using the camera to the work of the fuse of various digital images based on previously adopted fusion techniques such as arithmetic techniques (BT, CNT and MLT), statistical techniques (LMM,
... Show MoreStability of laminated plate under thermal load varied linearly along thickness, is developed using a higher order displacement field which depend on a parameter “m”, whose value is optimized to get results closest to three-dimension elasticity results. Hamilton, s principle is used to derive equations of motion for laminated plates. These equations are solved using Navier-type for simply supported boundary conditions to obtain non uniform critical thermal buckling and fundamental frequency under a ratio of this load. Many design parameters of cross ply and angle ply laminates such as, number of layers, aspect ratios and E1/E2 ratios for thick and thin plates are investigated. It is observed that linear and uniform distribution of
... Show MoreOne of the unique properties of laser heating applications is its powerful ability for precise pouring of energy on the needed regions in heat treatment applications. The rapid rise in temperature at the irradiated region produces a high temperature gradient, which contributes in phase metallurgical changes, inside the volume of the irradiated material. This article presents a comprehensive numerical work for a model based on experimentally laser heated AISI 1110 steel samples. The numerical investigation is based on the finite element method (FEM) taking in consideration the temperature dependent material properties to predict the temperature distribution within the irradiated material volume. The finite element analysis (FEA) was carried
... Show MoreThe distribution of the expanded exponentiated power function EEPF with four parameters, was presented by the exponentiated expanded method using the expanded distribution of the power function, This method is characterized by obtaining a new distribution belonging to the exponential family, as we obtained the survival rate and failure rate function for this distribution, Some mathematical properties were found, then we used the developed least squares method to estimate the parameters using the genetic algorithm, and a Monte Carlo simulation study was conducted to evaluate the performance of estimations of possibility using the Genetic algorithm GA.
Finite element modeling of transient temperature distribution is used to understand physical phenomena occurring during the dwell (penetration) phase and moving of welding tool in friction stir welding (FSW) of 5mm plate made of 7020-T53 aluminum alloy at 1400rpm and 40mm/min.
Thermocouples are used in locations near to the pin and under shoulder surface to study the welding tool penetration in the workpiece in advance and retreate sides along welding line in three positions (penetrate (start welding) , mid, pullout (end welding)).
Numerical results of ANSYS 12.0 package are compared to experimental data including axial load measurements at different tool rotational speeds (710rpm.900rpm.1120rpm and 1400rpm) Based on the experiment
In this research , we study the inverse Gompertz distribution (IG) and estimate the survival function of the distribution , and the survival function was evaluated using three methods (the Maximum likelihood, least squares, and percentiles estimators) and choosing the best method estimation ,as it was found that the best method for estimating the survival function is the squares-least method because it has the lowest IMSE and for all sample sizes
The cross section evaluation for (α,n) reaction was calculated according to the available International Atomic Energy Agency (IAEA) and other experimental published data . These cross section are the most recent data , while the well known international libraries like ENDF , JENDL , JEFF , etc. We considered an energy range from threshold to 25 M eV in interval (1 MeV). The average weighted cross sections for all available experimental and theoretical(JENDL) data and for all the considered isotopes was calculated . The cross section of the element is then calculated according to the cross sections of the isotopes of that element taking into account their abundance . A mathematical representative equation for each of the element
... Show More