Preferred Language
Articles
/
eRbfFooBVTCNdQwCwZCy
Underdetermined reverberant acoustic source separation using weighted full-rank nonnegative tensor models
...Show More Authors

In this paper, a fusion of K models of full-rank weighted nonnegative tensor factor two-dimensional deconvolution (K-wNTF2D) is proposed to separate the acoustic sources that have been mixed in an underdetermined reverberant environment. The model is adapted in an unsupervised manner under the hybrid framework of the generalized expectation maximization and multiplicative update algorithms. The derivation of the algorithm and the development of proposed full-rank K-wNTF2D will be shown. The algorithm also encodes a set of variable sparsity parameters derived from Gibbs distribution into the K-wNTF2D model. This optimizes each sub-model in K-wNTF2D with the required sparsity to model the time-varying variances of the sources in the spectrogram. In addition, an initialization method is proposed to initialize the parameters in the K-wNTF2D. Experimental results on the underdetermined reverberant mixing environment have shown that the proposed algorithm is effective at separating the mixture with an average signal-to-distortion ratio of 3 dB.

Scopus Clarivate Crossref
View Publication
Publication Date
Thu Nov 01 2018
Journal Name
2018 1st Annual International Conference On Information And Sciences (aicis)
Speech Emotion Recognition Using Minimum Extracted Features
...Show More Authors

Recognizing speech emotions is an important subject in pattern recognition. This work is about studying the effect of extracting the minimum possible number of features on the speech emotion recognition (SER) system. In this paper, three experiments performed to reach the best way that gives good accuracy. The first one extracting only three features: zero crossing rate (ZCR), mean, and standard deviation (SD) from emotional speech samples, the second one extracting only the first 12 Mel frequency cepstral coefficient (MFCC) features, and the last experiment applying feature fusion between the mentioned features. In all experiments, the features are classified using five types of classification techniques, which are the Random Forest (RF),

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Jul 14 2021
Journal Name
The Open Civil Engineering Journal
Producing Sustainable Concrete using Nano Recycled Glass
...Show More Authors
Background:

Many tools and techniques have been recently adopted to develop construction materials that are less harmful and friendlier to the environment. New products can be achieved through the recycling of waste material. Thus, this study aims to use recycled glass bottles as sustainable materials.

Objective:

Our challenge is to use nano glass powder by the addition or replacement of the weight of the cement for producing concrete with enhanced strength.

Methods:

A nano recycled glass p

... Show More
View Publication Preview PDF
Crossref (12)
Crossref
Publication Date
Tue May 30 2023
Journal Name
Iraqi Journal Of Science
mRNA Approach Image Encryption Using LUC Algorithm
...Show More Authors

      Bioinformatics is one of the computer science and biology sub-subjects concerned with the processes applied to biological data, such as gathering, processing, storing, and analyzing it. Biological data (ribonucleic acid (RNA), deoxyribonucleic acid (DNA), and protein sequences) has many applications and uses in many fields (data security, data segmentation, feature extraction, etc.). DNA sequences are used in the cryptography field, using the properties of biomolecules as the carriers of the data. Messenger RNA (mRNA) is a single strand used to make proteins containing genetic information. The information recorded from DNA also carries messages from DNA to ribosomes in the cytosol. In this paper, a new encryption technique bas

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sun Feb 27 2022
Journal Name
Iraqi Journal Of Science
Plants Leaf Diseases Detection Using Deep Learning
...Show More Authors

     Agriculture improvement is a national economic issue that extremely depends on productivity. The explanation of disease detection in plants plays a significant role in the agriculture field. Accurate prediction of the plant disease can help treat the leaf as early as possible, which controls the economic loss. This paper aims to use the Image processing techniques with Convolutional Neural Network (CNN). It is one of the deep learning techniques to classify and detect plant leaf diseases. A publicly available Plant village dataset was used, which consists of 15 classes, including 12 diseases classes and 3 healthy classes.  The data augmentation techniques have been used. In addition to dropout and weight reg

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (1)
Scopus Crossref
Publication Date
Sat Jan 30 2021
Journal Name
Iraqi Journal Of Science
Intrusion Detection System Using Data Stream Classification
...Show More Authors

Secure data communication across networks is always threatened with intrusion and abuse. Network Intrusion Detection System (IDS) is a valuable tool for in-depth defense of computer networks. Most research and applications in the field of intrusion detection systems was built based on analysing the several datasets that contain the attacks types using the classification of batch learning machine. The present study presents the intrusion detection system based on Data Stream Classification. Several data stream algorithms were applied on CICIDS2017 datasets which contain several new types of attacks. The results were evaluated to choose the best algorithm that satisfies high accuracy and low computation time.

View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Thu Dec 30 2004
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Catalytic Aromatization of Naphtha using Different Catalysts
...Show More Authors

View Publication Preview PDF
Publication Date
Sun Jan 14 2018
Journal Name
Journal Of Engineering
Optical Character Recognition Using Active Contour Segmentation
...Show More Authors

Document analysis of images snapped by camera is a growing challenge. These photos are often poor-quality compound images, composed of various objects and text; this makes automatic analysis complicated. OCR is one of the image processing techniques which is used to perform automatic identification of texts. Existing image processing techniques need to manage many parameters in order to clearly recognize the text in such pictures. Segmentation is regarded one of these essential parameters. This paper discusses the accuracy of segmentation process and its effect over the recognition process. According to the proposed method, the images were firstly filtered using the wiener filter then the active contour algorithm could b

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
Using Benford’s Law to detect Financial Fraud
...Show More Authors

Fraud Includes acts involving the exercise of deception by multiple parties inside and outside companies in order to obtain economic benefits against the harm to those companies, as they are to commit fraud upon the availability of three factors which represented by the existence of opportunities, motivation, and rationalization. Fraud detecting require necessity of indications the possibility of its existence. Here, Benford’s law can play an important role in direct the light towards the possibility of the existence of financial fraud in the accounting records of the company, which provides the required effort and time for detect fraud and prevent it.

View Publication Preview PDF
Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Iop Conference Series: Earth And Environmental Science
Using Ultraviolet Technique for Well Water Disinfection
...Show More Authors

View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Baghdad Science Journal
Fuzzy-assignment Model by Using Linguistic Variables
...Show More Authors

      This work addressed the assignment problem (AP) based on fuzzy costs, where the objective, in this study, is to minimize the cost. A triangular, or trapezoidal, fuzzy numbers were assigned for each fuzzy cost. In addition, the assignment models were applied on linguistic variables which were initially converted to quantitative fuzzy data by using the Yager’sorankingi method. The paper results have showed that the quantitative date have a considerable effect when considered in fuzzy-mathematic models.

View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Clarivate Crossref