The drill bit is the most essential tool in drilling operation and optimum bit selection is one of the main challenges in planning and designing new wells. Conventional bit selections are mostly based on the historical performance of similar bits from offset wells. In addition, it is done by different techniques based on offset well logs. However, these methods are time consuming and they are not dependent on actual drilling parameters. The main objective of this study is to optimize bit selection in order to achieve maximum rate of penetration (ROP). In this work, a model that predicts the ROP was developed using artificial neural networks (ANNs) based on 19 input parameters. For the modeling part, a one-dimension mechanical earth model (1D MEM) parameters, drilling fluid properties, and rig- and bit-related parameters, were included as inputs. The optimizing process was then performed to propose the optimum drilling parameters to select the drilling bit that provides the maximum possible ROP. To achieve this, the corresponding mathematical function of the ANNs model was implemented in a procedure using the genetic algorithm (GA) to obtain operating parameters that lead to maximum ROP. The output will propose an optimal bit selection that provides the maximum ROP along with the best drilling parameters. The statistical analysis of the predicted bit types and optimum drilling parameters comparing the actual flied measured values showed a low root mean square error (RMSE), low average absolute percentage error (AAPE), and high correction coefficient (R2). The proposed methodology provides drilling engineers with more choices to determine the best-case scenario for planning and/or drilling future wells. Meanwhile, the newly developed model can be used in optimizing the drilling parameters, maximizing ROP, estimating the drilling time, and eventually reducing the total field development expenses.
Uncompressed form of the digital images are needed a very large storage capacity amount, as a consequence requires large communication bandwidth for data transmission over the network. Image compression techniques not only minimize the image storage space but also preserve the quality of image. This paper reveal image compression technique which uses distinct image coding scheme based on wavelet transform that combined effective types of compression algorithms for further compression. EZW and SPIHT algorithms are types of significant compression techniques that obtainable for lossy image compression algorithms. The EZW coding is a worthwhile and simple efficient algorithm. SPIHT is an most powerful technique that utilize for image
... Show More<span>One of the main difficulties facing the certified documents documentary archiving system is checking the stamps system, but, that stamps may be contains complex background and surrounded by unwanted data. Therefore, the main objective of this paper is to isolate background and to remove noise that may be surrounded stamp. Our proposed method comprises of four phases, firstly, we apply k-means algorithm for clustering stamp image into a number of clusters and merged them using ISODATA algorithm. Secondly, we compute mean and standard deviation for each remaining cluster to isolate background cluster from stamp cluster. Thirdly, a region growing algorithm is applied to segment the image and then choosing the connected regi
... Show MoreCompanies compete greatly with each other today, so they need to focus on innovation to develop their products and make them competitive. Lean product development is the ideal way to develop product, foster innovation, maximize value, and reduce time. Set-Based Concurrent Engineering (SBCE) is an approved lean product improvement mechanism that builds on the creation of a number of alternative designs at the subsystem level. These designs are simultaneously improved and tested, and the weaker choices are removed gradually until the optimum solution is reached finally. SBCE implementations have been extensively performed in the automotive industry and there are a few case studies in the aerospace industry. This research describe the use o
... Show MoreThis work is concerned with the design and performance evaluation of a shell and double concentric tubes heat exchanger using Solid Works and ANSY (Computational Fluid Dynamics).
Computational fluid dynamics technique which is a computer-based analysis is used to simulate the heat exchanger involving fluid flow, heat transfer. CFD resolve the entire heat exchanger in discrete elements to find: (1) the temperature gradients, (2) pressure distribution, and (3) velocity vectors. The RNG k-ε model of turbulence is used to determining the accurate results from CFD.
The heat exchanger design for this work consisted of a shell and eight double concentric tubes. The number of inlets are three and that of o
... Show MoreSome maps of the chaotic firefly algorithm were selected to select variables for data on blood diseases and blood vessels obtained from Nasiriyah General Hospital where the data were tested and tracking the distribution of Gamma and it was concluded that a Chebyshevmap method is more efficient than a Sinusoidal map method through mean square error criterion.
COVID 19 has spread rapidly around the world due to the lack of a suitable vaccine; therefore the early prediction of those infected with this virus is extremely important attempting to control it by quarantining the infected people and giving them possible medical attention to limit its spread. This work suggests a model for predicting the COVID 19 virus using feature selection techniques. The proposed model consists of three stages which include the preprocessing stage, the features selection stage, and the classification stage. This work uses a data set consists of 8571 records, with forty features for patients from different countries. Two feature selection techniques are used in
I've made extensive studies on the distribution of the electric field stable heterogeneous within intensive that contain metal rings with slope diagonal positive to a site halfway to be in its maximum value, followed by decline negative and equally to the other end of the concentrated distributed by electric stable thanking sequentially and have focused empirical studies in the pastthe molecules that you focused Pantqaúha during passage
Joint diseases, such as osteoarthritis, induce pain and loss of mobility to millions of people around the world. Current clinical methods for the diagnosis of osteoarthritis include X-ray, magnetic resonance imaging, and arthroscopy. These methods may be insensitive to the earliest signs of osteoarthritis. This study investigates a new procedure that was developed and validated numerically for use in the evaluation of cartilage quality. This finite element model of the human articular cartilage could be helpful in providing insight into mechanisms of injury, effects of treatment, and the role of mechanical factors in degenerative
conditions, this three-dimensional finite element model is a useful tool for understanding of the stress d