The drill bit is the most essential tool in drilling operation and optimum bit selection is one of the main challenges in planning and designing new wells. Conventional bit selections are mostly based on the historical performance of similar bits from offset wells. In addition, it is done by different techniques based on offset well logs. However, these methods are time consuming and they are not dependent on actual drilling parameters. The main objective of this study is to optimize bit selection in order to achieve maximum rate of penetration (ROP). In this work, a model that predicts the ROP was developed using artificial neural networks (ANNs) based on 19 input parameters. For the modeling part, a one-dimension mechanical earth model (1D MEM) parameters, drilling fluid properties, and rig- and bit-related parameters, were included as inputs. The optimizing process was then performed to propose the optimum drilling parameters to select the drilling bit that provides the maximum possible ROP. To achieve this, the corresponding mathematical function of the ANNs model was implemented in a procedure using the genetic algorithm (GA) to obtain operating parameters that lead to maximum ROP. The output will propose an optimal bit selection that provides the maximum ROP along with the best drilling parameters. The statistical analysis of the predicted bit types and optimum drilling parameters comparing the actual flied measured values showed a low root mean square error (RMSE), low average absolute percentage error (AAPE), and high correction coefficient (R2). The proposed methodology provides drilling engineers with more choices to determine the best-case scenario for planning and/or drilling future wells. Meanwhile, the newly developed model can be used in optimizing the drilling parameters, maximizing ROP, estimating the drilling time, and eventually reducing the total field development expenses.
Four complexes of Co(II),Ni(II),Cu(II) and Zn(II) with the azo ligand (4-chloro-N-(2-(dimethylamino)ethyl)-5-((2-hydroxy-4,6-dimethylphenol)diazenyl)-2-methoxybenzamide) L. The structure of ligand and complexes were confirmed on the basis of their analytical and spectral data, these dyes were tested as dyeing in cotton fabric, and also testing in light and cleaner firmness. Also, antimicrobial and antifungal activities of ligand and their complexes were evaluated and the results showed that the ZnL compound showed the higher antibacterial activity with inhibition zone of 13mm against Staphyloco-ccus epidermidis, Steptococcus sp. and Escherichia coli compared with ligand and other metal complexes .In case of ZnL compound the antifungal activ
... Show MoreDue to the huge variety of 5G services, Network slicing is promising mechanism for dividing the physical network resources in to multiple logical network slices according to the requirements of each user. Highly accurate and fast traffic classification algorithm is required to ensure better Quality of Service (QoS) and effective network slicing. Fine-grained resource allocation can be realized by Software Defined Networking (SDN) with centralized controlling of network resources. However, the relevant research activities have concentrated on the deep learning systems which consume enormous computation and storage requirements of SDN controller that results in limitations of speed and accuracy of traffic classification mechanism. To fill thi
... Show MoreThis paper experimentally investigates the heating process of a hot water supply using a neural network implementation of a self-tuning PID controller on a microcontroller system. The Particle Swarm Optimization (PSO) algorithm employed in system tuning proved very effective, as it is simple and fast optimization algorithm. The PSO method for the PID parameters is executed on the Matlab platform in order to put these parameters in the real-time digital PID controller, which was experimented with in a pilot study on a microcontroller platform. Instead of the traditional phase angle power control (PAPC) method, the Cycle by Cycle Power Control (CBCPC) method is implemented because it yields better power factor and eliminates harmonics
... Show MoreThe electrical and thermal performance of a typical single pass hybrid photovoltaic/thermal (PV/T) air collector is modeled, simulated and analyzed for two selected case studies in Iraq. An improved mathematical thermo-electrical model is derived in terms of design, operating and climatic parameters of the hybrid solar collector to evaluate its important characteristics: collector flow and heat removal factors, PV maximum power point and its temperature coefficient, and overall power and efficiency. Unlike previous PV/T thermal models, the present model is obtained with some additions and corrections in radiation and convection heat coefficients for the top loss and for the air duct with more applicable sky temperature correlation. The well
... Show MoreLaser is a powerful device that has a wide range of applications in fields ranging from materials science and manufacturing to medicine and fibre optic communications. One remarkable
Nanoparticles (NPs) have unique capabilities that make them an eye-opener opportunity for the upstream oil industry. Their nano-size allows them to flow within reservoir rocks without the fear of retention between micro-sized pores. Incorporating NPs with drilling and completion fluids has proved to be an effective additive that improves various properties such as mud rheology, filtration, thermal conductivity, and wellbore stability. However, the biodegradability of drilling fluid chemicals is becoming a global issue as the discharged wetted cuttings raise toxicity concerns and environmental hazards. Therefore, it is urged to utilize chemicals that tend to break down and susceptible to biodegradation. This research presents the pra
... Show More