The drill bit is the most essential tool in drilling operation and optimum bit selection is one of the main challenges in planning and designing new wells. Conventional bit selections are mostly based on the historical performance of similar bits from offset wells. In addition, it is done by different techniques based on offset well logs. However, these methods are time consuming and they are not dependent on actual drilling parameters. The main objective of this study is to optimize bit selection in order to achieve maximum rate of penetration (ROP). In this work, a model that predicts the ROP was developed using artificial neural networks (ANNs) based on 19 input parameters. For the modeling part, a one-dimension mechanical earth model (1D MEM) parameters, drilling fluid properties, and rig- and bit-related parameters, were included as inputs. The optimizing process was then performed to propose the optimum drilling parameters to select the drilling bit that provides the maximum possible ROP. To achieve this, the corresponding mathematical function of the ANNs model was implemented in a procedure using the genetic algorithm (GA) to obtain operating parameters that lead to maximum ROP. The output will propose an optimal bit selection that provides the maximum ROP along with the best drilling parameters. The statistical analysis of the predicted bit types and optimum drilling parameters comparing the actual flied measured values showed a low root mean square error (RMSE), low average absolute percentage error (AAPE), and high correction coefficient (R2). The proposed methodology provides drilling engineers with more choices to determine the best-case scenario for planning and/or drilling future wells. Meanwhile, the newly developed model can be used in optimizing the drilling parameters, maximizing ROP, estimating the drilling time, and eventually reducing the total field development expenses.
ANN modeling is used here to predict missing monthly precipitation data in one station of the eight weather stations network in Sulaimani Governorate. Eight models were developed, one for each station as for prediction. The accuracy of prediction obtain is excellent with correlation coefficients between the predicted and the measured values of monthly precipitation ranged from (90% to 97.2%). The eight ANN models are found after many trials for each station and those with the highest correlation coefficient were selected. All the ANN models are found to have a hyperbolic tangent and identity activation functions for the hidden and output layers respectively, with learning rate of (0.4) and momentum term of (0.9), but with different data
... Show MoreTraffic management at road intersections is a complex requirement that has been an important topic of research and discussion. Solutions have been primarily focused on using vehicular ad hoc networks (VANETs). Key issues in VANETs are high mobility, restriction of road setup, frequent topology variations, failed network links, and timely communication of data, which make the routing of packets to a particular destination problematic. To address these issues, a new dependable routing algorithm is proposed, which utilizes a wireless communication system between vehicles in urban vehicular networks. This routing is position-based, known as the maximum distance on-demand routing algorithm (MDORA). It aims to find an optimal route on a hop-by-ho
... Show MoreThis paper presents an improved technique on Ant Colony Optimization (ACO) algorithm. The procedure is applied on Single Machine with Infinite Bus (SMIB) system with power system stabilizer (PSS) at three different loading regimes. The simulations are made by using MATLAB software. The results show that by using Improved Ant Colony Optimization (IACO) the system will give better performance with less number of iterations as it compared with a previous modification on ACO. In addition, the probability of selecting the arc depends on the best ant performance and the evaporation rate.
Using the Neural network as a type of associative memory will be introduced in this paper through the problem of mobile position estimation where mobile estimate its location depending on the signal strength reach to it from several around base stations where the neural network can be implemented inside the mobile. Traditional methods of time of arrival (TOA) and received signal strength (RSS) are used and compared with two analytical methods, optimal positioning method and average positioning method. The data that are used for training are ideal since they can be obtained based on geometry of CDMA cell topology. The test of the two methods TOA and RSS take many cases through a nonlinear path that MS can move through that region. The result
... Show MoreUsing the Neural network as a type of associative memory will be introduced in this paper through the problem of mobile position estimation where mobile estimate its location depending on the signal strength reach to it from several around base stations where the neural network can be implemented inside the mobile. Traditional methods of time of arrival (TOA) and received signal strength (RSS) are used and compared with two analytical methods, optimal positioning method and average positioning method. The data that are used for training are ideal since they can be obtained based on geometry of CDMA cell topology. The test of the two methods TOA and RSS take many cases through a nonlinear path that MS can move through that region. The result
... Show MoreUsing the Neural network as a type of associative memory will be introduced in this paper through the problem of mobile position estimation where mobile estimate its location depending on the signal strength reach to it from several around base stations where the neural network can be implemented inside the mobile. Traditional methods of time of arrival (TOA) and received signal strength (RSS) are used and compared with two analytical methods, optimal positioning method and average positioning method. The data that are used for training are ideal since they can be obtained based on geometry of CDMA cell topology. The test of the two methods TOA and RSS take many cases through a nonlinear path that MS can move through tha
... Show MoreArtificial Neural Network (ANN) model's application is widely increased for wastewater treatment plant (WWTP) variables prediction and forecasting which can enable the operators to take appropriate action and maintaining the norms. It is much easier modeling tool for dealing with complex nature WWTP modeling comparing with other traditional mathematical models. ANN technique significance has been considered at present study for the prediction of sequencing batch reactor (SBR) performance based on effluent's (BOD5/COD) ratio after collecting the required historical daily SBR data for two years operation (2015-2016) from Baghdad Mayoralty and Al-Rustamiya WWTP office, Iraq. The prediction was gotten by the application of a feed-forwa
... Show MoreAccording to the importance of the conveyor systems in various industrial and service lines, it is very desirable to make these systems as efficient as possible in their work. In this paper, the speed of a conveyor belt (which is in our study a part of an integrated training robotic system) is controlled using one of the artificial intelligence methods, which is the Artificial Neural Network (ANN). A visions sensor will be responsible for gathering information about the status of the conveyor belt and parts over it, where, according to this information, an intelligent decision about the belt speed will be taken by the ANN controller. ANN will control the alteration in speed in a way that gives the optimized energy efficiency through
... Show MoreIn recent years, there has been expanding development in the vehicular part and the number of vehicles moving on the roads in all the sections of the country. Arabic vehicle number plate identification based on image processing is a dynamic area of this work; this technique is used for security purposes such as tracking of stolen cars and access control to restricted areas. The License Plate Recognition System (LPRS) exploits a digital camera to capture vehicle plate numbers is used as input to the proposed recognition system. Basically, the proposed system consists of three phases, vehicle license plate localization, character segmentation, and character recognition, the License Plate (LP) detection is presented using canny edge detection
... Show More