Preferred Language
Articles
/
eBfXNY8BVTCNdQwCBmLx
Improvement of Harris Algorithm Based on Gaussian Scale Space
...Show More Authors

Features is the description of the image contents which could be corner, blob or edge. Corners are one of the most important feature to describe image, therefore there are many algorithms to detect corners such as Harris, FAST, SUSAN, etc. Harris is a method for corner detection and it is an efficient and accurate feature detection method. Harris corner detection is rotation invariant but it isn’t scale invariant. This paper presents an efficient harris corner detector invariant to scale, this improvement done by using gaussian function with different scales. The experimental results illustrate that it is very useful to use Gaussian linear equation to deal with harris weakness.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Aug 19 2024
Journal Name
Scientific Reports
An in-vitro evaluation of residual dentin retained after using novel enzymatic-based chemomechanical caries removal agents
...Show More Authors

To assess the biochemical, mechanical and structural characteristics of retained dentin after applying three novel bromelain‑contained chemomechanical caries removal (CMCR) formulations in comparison to the conventional excavation methods (hand and rotary) and a commercial papain‑contained gel (Brix 3000). Seventy‑two extracted permanent molars with natural occlusal carious lesions (score > 4 following the International Caries Detection and Assessment System (ICDAS‑II)) were randomly allocated into six groups (n = 12) according to the excavation methods: hand excavation, rotary excavation, Brix 3000, bromelain‑contained gel (F1), bromelain‑chloramine‑T (F2), and bromelain chlorhexidine gel (F3). The superficial and deepe

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun Jul 01 2012
Journal Name
Food Chemistry
High performance liquid chromatographic determination of aflatoxins in chilli, peanut and rice using silica based monolithic column
...Show More Authors

A simple and rapid high performance liquid chromatographic with fluorescence detection method for the determination of the aflatoxin B1, B2, G1 and G2 in peanuts, rice and chilli was developed. The sample was extracted using acetonitrile:water (90:10, v/v%) and then purified by using ISOLUTE multimode solid phase extraction. After the pre-column derivatisation, the analytes were separated within 3.7 min using Chromolith performance RP-18e (100–4.6 mm) monolithic column. To assess the possible effects of endogenous components in the food items, matrix-matched calibration was used for the quantification and validation. The recoveries of aflatoxins that were spiked into food samples were 86.38–104.5% and RSDs were <4.4%. The method was

... Show More
View Publication
Scopus (90)
Crossref (81)
Scopus Clarivate Crossref
Publication Date
Wed May 01 2019
Journal Name
Environmental Technology &amp; Innovation
Biomineralization based remediation of cadmium and nickel contaminated wastewater by ureolytic bacteria isolated from barn horses soil
...Show More Authors

View Publication
Scopus (103)
Crossref (93)
Scopus Clarivate Crossref
Publication Date
Wed Oct 11 2023
Journal Name
Journal Of Educational And Psychological Researches
Designing a Proposed Educational Program Based on Augmented Reality Technology and Measuring Its Effectiveness in Developing the Skills of Research and Historical Imagination Among Students of the Humanities Track in The Secondary Stage in the City of Mak
...Show More Authors

The current study aims to develop a proposed educational program based on augmented reality (AR) technology, in addition to assessing its effectiveness in developing research and historical imagination skills of the Humanities Track's female students at the secondary stage, as well as assessing the correlative and predictive relationships between the amount of growth for the two dependent variables. To achieve this, a secondary school in the city of Makkah Al-Mukarramah was chosen, and an available random sample of (30) female students from the study population was selected. The quasi-experimental approach was followed by this study, particularly one group design. In addition, two tools were used to collect study data, namely: a test of

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of the method of partial least squares and the algorithm of singular values decomposion to estimate the parameters of the logistic regression model in the case of the problem of linear multiplicity by using the simulation
...Show More Authors

The logistic regression model is an important statistical model showing the relationship between the binary variable and the explanatory variables.                                                        The large number of explanations that are usually used to illustrate the response led to the emergence of the problem of linear multiplicity between the explanatory variables that make estimating the parameters of the model not accurate.    

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Aug 30 2023
Journal Name
Baghdad Science Journal
Deep Learning-based Predictive Model of mRNA Vaccine Deterioration: An Analysis of the Stanford COVID-19 mRNA Vaccine Dataset
...Show More Authors

The emergence of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has resulted in a global health crisis leading to widespread illness, death, and daily life disruptions. Having a vaccine for COVID-19 is crucial to controlling the spread of the virus which will help to end the pandemic and restore normalcy to society. Messenger RNA (mRNA) molecules vaccine has led the way as the swift vaccine candidate for COVID-19, but it faces key probable restrictions including spontaneous deterioration. To address mRNA degradation issues, Stanford University academics and the Eterna community sponsored a Kaggle competition.This study aims to build a deep learning (DL) model which will predict deterioration rates at each base of the mRNA

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (3)
Scopus Crossref
Publication Date
Thu Dec 01 2016
Journal Name
Journal Of Engineering
A Hybrid Coefficient Decimation- Interpolation Based Reconfigurable Low Complexity Filter Bank for Cognitive Radio
...Show More Authors

Non uniform channelization is a crucial task in cognitive radio receivers for obtaining separate channels from the digitized wideband input signal at different intervals of time. The two main requirements in the channelizer are reconfigurability and low complexity. In this paper, a reconfigurable architecture based on a combination of Improved Coefficient Decimation Method (ICDM) and Coefficient Interpolation Method (CIM) is proposed. The proposed Hybrid Coefficient Decimation-Interpolation Method (HCDIM) based filter bank (FB) is able to realize the same number of channels realized using (ICDM) but with a maximum decimation factor divided by the interpolation factor (L), which leads to less deterioration in stop band at

... Show More
View Publication Preview PDF
Publication Date
Fri Dec 31 2021
Journal Name
International Journal Of Intelligent Engineering And Systems
Airborne Computer System Based Collision-Free Flight Path Finding Strategy Design for Drone Model
...Show More Authors

View Publication
Scopus (9)
Crossref (1)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Ssrn Electronic Journal
Highly Sensitive Fiber Brag Grating Based Gas Sensor Integrating Polyaniline Nanofiber for Remote Monitoring
...Show More Authors

View Publication
Crossref
Publication Date
Tue Jan 14 2025
Journal Name
South Eastern European Journal Of Public Health
Deep learning-based threat Intelligence system for IoT Network in Compliance With IEEE Standard
...Show More Authors

The continuous advancement in the use of the IoT has greatly transformed industries, though at the same time it has made the IoT network vulnerable to highly advanced cybercrimes. There are several limitations with traditional security measures for IoT; the protection of distributed and adaptive IoT systems requires new approaches. This research presents novel threat intelligence for IoT networks based on deep learning, which maintains compliance with IEEE standards. Interweaving artificial intelligence with standardization frameworks is the goal of the study and, thus, improves the identification, protection, and reduction of cyber threats impacting IoT environments. The study is systematic and begins by examining IoT-specific thre

... Show More
View Publication
Crossref