In the latest years there has been a profound evolution in computer science and technology, which incorporated several fields. Under this evolution, Content Base Image Retrieval (CBIR) is among the image processing field. There are several image retrieval methods that can easily extract feature as a result of the image retrieval methods’ progresses. To the researchers, finding resourceful image retrieval devices has therefore become an extensive area of concern. Image retrieval technique refers to a system used to search and retrieve images from digital images’ huge database. In this paper, the author focuses on recommendation of a fresh method for retrieving image. For multi presentation of image in Convolutional Neural Network (CNN), Convolutional Neural Network-Slanlet Transform (CNN-SLT) model uses Slanlet Transform (SLT). The CBIR system was therefore inspected and the outcomes benchmarked. The results clearly illustrate that generally, the recommended technique outdid the rest with accuracy of 89 percent out of the three datasets that were applied in our experiments. This remarkable performance clearly illustrated that the CNN-SLT method worked well for all three datasets, where the previous phase (CNN) and the successive phase (CNN-SLT) harmoniously worked together.
The aim of this research is to know danger of radioactive isotopes
that are found in samples of drugs traded in Iraqi markets. The
samples are Iraqi Amoxicillin, English Amoxicillin, UAE
Amoxicillin, Indian Amoxicillin, Iraqi Paracetamol, English
Paracetamol, UAE Paracetamol and Indian Paracetamol. By high
purity germanium the activity of the following isotopes 40K, 214Pb,
228Ac and 137Cs is measured and the specific activity was used to
calculate the annual effective dose. Then the calculated annual
effective dose values are compared with the allowable annual
effective dose values of each part of digestive channel. This research
concluded that the measured annual effective dose values are not
dangerous.<
One of the significant stages in computer vision is image segmentation which is fundamental for different applications, for example, robot control and military target recognition, as well as image analysis of remote sensing applications. Studies have dealt with the process of improving the classification of all types of data, whether text or audio or images, one of the latest studies in which researchers have worked to build a simple, effective, and high-accuracy model capable of classifying emotions from speech data, while several studies dealt with improving textual grouping. In this study, we seek to improve the classification of image division using a novel approach depending on two methods used to segment the images. The first
... Show MoreBuilding a system to identify individuals through their speech recording can find its application in diverse areas, such as telephone shopping, voice mail and security control. However, building such systems is a tricky task because of the vast range of differences in the human voice. Thus, selecting strong features becomes very crucial for the recognition system. Therefore, a speaker recognition system based on new spin-image descriptors (SISR) is proposed in this paper. In the proposed system, circular windows (spins) are extracted from the frequency domain of the spectrogram image of the sound, and then a run length matrix is built for each spin, to work as a base for feature extraction tasks. Five different descriptors are generated fro
... Show MoreHM Al-Dabbas, RA Azeez, AE Ali, Iraqi Journal of Science, 2023
Recent years have seen an explosion in graph data from a variety of scientific, social and technological fields. From these fields, emotion recognition is an interesting research area because it finds many applications in real life such as in effective social robotics to increase the interactivity of the robot with human, driver safety during driving, pain monitoring during surgery etc. A novel facial emotion recognition based on graph mining has been proposed in this paper to make a paradigm shift in the way of representing the face region, where the face region is represented as a graph of nodes and edges and the gSpan frequent sub-graphs mining algorithm is used to find the frequent sub-structures in the graph database of each emotion. T
... Show MoreData <span>transmission in orthogonal frequency division multiplexing (OFDM) system needs source and channel coding, the transmitted data suffers from the bad effect of large peak to average power ratio (PAPR). Source code and channel codes can be joined using different joined codes. Variable length error correcting code (VLEC) is one of these joined codes. VLEC is used in mat lab simulation for image transmission in OFDM system, different VLEC code length is used and compared to find that the PAPR decreased with increasing the code length. Several techniques are used and compared for PAPR reduction. The PAPR of OFDM signal is measured for image coding with VLEC and compared with image coded by Huffman source coding and Bose-
... Show More