Backgr ound: The transfer of the tibialis posterior tendon to the anterior aspect of the ankle not only replaces the function of the paralyzed muscles, but also removes the deforming force on the medial aspect of the foot. Objecti ves: In this study, we evaluated patients who underwent tibialis posterior tendon transfer for the treatment of foot drop, and comparison through interosseous membrane route versus anterior to lower tibia route of tibialis posterior tendon transfer, with evaluation of the results according to carayon criteria Methods: Nine patients with foot drop secondary to different causes treated with tibialis posterior tendon transfer from January 2011 to January 2012 were followed up for a mean of 12 months in Al Kindy Teach
... Show MoreBac kground: The transfer of the tibialis posterior tendon to the anterior aspect
of the ankle not only replaces the function of the paralyzed muscles, but also
removes the deforming force on the medial aspect of the foot.
Objec t i ves : In this study, we evaluated patients who underwent tibialis
posterior tendon transfer for the treatment of foot drop, and comparison through
interosseous membrane route versus anterior to lower tibia route of tibialis
posterior tendon transfer, with evaluation of the results according to carayon
criteria
Methods: Nine patients with foot drop secondary to different causes treated with
tibialis posterior tendon transfer from January 2011 to January 2012 were
followed up for a
Maximum values of one particle radial electronic density distribution has been calculated by using Hartree-Fock (HF)wave function with data published by[A. Sarsa et al. Atomic Data and Nuclear Data Tables 88 (2004) 163–202] for K and L shells for some Be-like ions. The Results confirm that there is a linear behavior restricted the increasing of maximum points of one particle radial electronic density distribution for K and L shells throughout some Be-like ions. This linear behavior can be described by using the nth term formula of arithmetic sequence, that can be used to calculate the maximum radial electronic density distribution for any ion within Be like ions for Z<20.
Powder Silica (SiO2) was added to epoxy polymer with different weight percentages (3.75,7.5,11.25 and 15 wt%) for particle size  63 µm. Hand lay-up method it is used to prepared (Epoxy-Silica) composite, and cutting appropriate specimens for testing. Electrical strength varies nonlinearly with specimens thickness, also decreasing with average time for the rise of voltage decreases due to electro thermal effects. Clearly, electrical strength decreases with the increase of the proportion of added silica. The hardness, tensile strength and young modulus increased with the added silica increases due to changing in material characteristics from ductility to brittle. Microscopic cracks and irregularity deformation were a
... Show MoreSnS nanobelt thin films were deposited on glass substrates in acidic solution by chemical bath deposition (CBD) method. The belt-like morphologies of as-deposited SnS thin films were characterized by scanning electron microscope (SEM) and transmission electron microscopy (TEM). X-ray diffraction (XRD) and Raman measurements were carried out to confirm the crystal structures and phase purities of SnS nanobelt thin films. The morphologies and phase purities of SnS thin films were influenced greatly by the tin and sulfur precursors. The bandgaps of SnS nanobelts were determined to be 1.39–1.41 eV by UV–vis absorption and photoluminescence (PL) spectra. Current-voltage ((I-V)) and current-time ((I-T)) characteristics were studied to demon
... Show MoreThe interlaminar fracture toughness of polymer blends reinforced by glass fiber has
been investigated. Epoxy (EP), unsaturated polyester(UPE), polystyrene (PS),
polyurethane (PU) and their blends with different ratios (10%PS/90%EP),
(20%PS/80%EP), (20%PU/80%EP) and (20%PU/80%UPE) were chosen as a matrices A
sheet of composites were prepared using hand lay -up method, these sheet were cut as the
double cantilever beam (DCB) specimen to determine interlaminar fracture toughness of
these composites .Its found that, blending of EP,UPE with 20% of PU will improve the
interlaminar fracture toughness ,but the adding of 10% PS, 20%PS to EP will decrease
the interlaminar toughness of these composites.