A novel ligand, (E)-5-((2-hydroxy-4,6-dimethylphenyl)diazenyl)-2,3-dihydrophthalazine-1,4- dione, was synthesized through the reaction of 3,5-dimethylphenol with the diazonium salt of 5-amino-2,3-dihydrophthalazine-1,4-dione. The ligand underwent characterization through the utilization of diverse spectroscopic methods, including UV-Vis, FT-IR, 13C, and 1H-NMR, alongside Mass spectroscopy and micro elemental analysis (Carbon, Hydrogen, Nitrogen, and Oxygen). Metal chelates of transition metals were prepared and analyzed using elemental analysis, mass spectra, atomic absorption, UV-Vis, FT-IR spectral analysis, as well as conductivity and magnetic measurements. The investigation into the compounds’ nature was conducted by utilizing mole ratio and continuous contrast methods, where Beer’s law was adhered to over a concentration range of 1×10−4 - 3×10−4 mol/L. The determination of the molar absorptivity of the compound solutions was carried out. Analytical data analysis indicated that all complexes demonstrated a metal-ligand ratio of 1:2, with the exception of the palladium complex, which exhibited a 1:1 ratio. Physicochemical data indicated an octahedral structure for the Pt (IV) and Ni (II) complexes and a square planar structure for the Pd (II) complex. The Pd complex was utilized in a carbon-carbon Suzuki coupling reaction to evaluate the application of this complex. Furthermore, the biological activity of these complexes was assessed on the proliferation of human blood lymphocytes. The results demonstrated that the ligand inhibited cell division at varying levels, with the inhibition increasing with higher concentrations. Furthermore, the Pd complex caused a prolonged arrest during mitosis at the boundary between metaphase and anaphase, leading to the suppression of proliferation in the lymphocyte cell line. The stability of the dyes was assessed in terms of light exposure and resistance to detergents.
The new Schiff base (L) “4‐[(2,4‐dimethoxy‐benzylidene)‐amino]‐1,5‐dimethyl‐2‐phenyl‐1,2‐dihydro‐pyrazol‐3‐one” was synthesized from 2,4‐dimethoxy‐benzaldehyde and 4‐amino‐1,5‐dimethyl‐2‐phenyl‐1,2‐dihydropyrazol‐3‐one, and the geometry of Schiff base was characterized and determined by proton nuclear magnetic resonance (1H‐NMR), mass, Fourier transform infrared (FT‐IR), and ultraviolet‐visible (UV‐vis) spectroscopy. Schiff complexes of Ni(II), Pd(II), Pt(IV), Zn(II), Cd(II), and Mg(II) have been prepared by reaction of ion metals with as‐prepared Schiff base. The results showed that synthesized complexes offered 1:2 m
.Curcumin (Cur) and L phenylalanine (Phy) compounds were used to prepare two mixed ligand complexes with Cr (III) and Fe (III) ions. The synthesized complexes are characterized by using conductivity measurement and different spectral methods like FT-IR and UV- Vis .Molar conductance and analytical studies confirmed that the complexes exhibit octahedral geometry., suggest that the complexes are formed in 1: 1 :2 [ L : Metal : 2phe ] ratio and they proposed to have the general formulae [M(Cur)(phe)2] Cl (M= Cr (III) and Fe (III) The compound dyeing method was studied and applied to acrylic fabric.The antibacterial activity of curcumin, phenylalanine and their mixed ligand complexes were examined on pathogenic bacterial strains and showed good
... Show MorePreparation and Identification of some new Pyrazolopyrin derivatives and their Polymerizations study
In present days, drug resistance is a major emerging problem in the healthcare sector. Novel antibiotics are in considerable need because present effective treatments have repeatedly failed. Antimicrobial peptides are the biologically active secondary metabolites produced by a variety of microorganisms like bacteria, fungi, and algae, which possess surface activity reduction activity along with this they are having antimicrobial, antifungal, and antioxidant antibiofilm activity. Antimicrobial peptides include a wide variety of bioactive compounds such as Bacteriocins, glycolipids, lipopeptides, polysaccharide-protein complexes, phospholipids, fatty acids, and neutral lipids. Bioactive peptides derived from various natural sources like bacte
... Show MoreLead remediation was achieved using simple cost, effective and eco-friendly way from industrial wastewater. Phragmitesaustralis (P.a) (Iraqi plant), was used as anovel biomaterial to remove lead ions from synthesized waste water. Different parameters which affected on adsorption processes were investigated like adsorbent dose, pH, contact time, and adsorbent particle size, to reach the optimized conditions (maximum adsorption). The adsorption of Pb (?) on (P.a) involved fast and slow process as a mechanism steps according to obey two theoretical adsorption isotherms; Langmuir and Freundlich. The thermos dynamic adsorption parameters were evaluated also. The (?H) obtained positive value that meanes adsorption of lead ions was an endothermic
... Show More