A novel ligand, (E)-5-((2-hydroxy-4,6-dimethylphenyl)diazenyl)-2,3-dihydrophthalazine-1,4- dione, was synthesized through the reaction of 3,5-dimethylphenol with the diazonium salt of 5-amino-2,3-dihydrophthalazine-1,4-dione. The ligand underwent characterization through the utilization of diverse spectroscopic methods, including UV-Vis, FT-IR, 13C, and 1H-NMR, alongside Mass spectroscopy and micro elemental analysis (Carbon, Hydrogen, Nitrogen, and Oxygen). Metal chelates of transition metals were prepared and analyzed using elemental analysis, mass spectra, atomic absorption, UV-Vis, FT-IR spectral analysis, as well as conductivity and magnetic measurements. The investigation into the compounds’ nature was conducted by utilizing mole ratio and continuous contrast methods, where Beer’s law was adhered to over a concentration range of 1×10−4 - 3×10−4 mol/L. The determination of the molar absorptivity of the compound solutions was carried out. Analytical data analysis indicated that all complexes demonstrated a metal-ligand ratio of 1:2, with the exception of the palladium complex, which exhibited a 1:1 ratio. Physicochemical data indicated an octahedral structure for the Pt (IV) and Ni (II) complexes and a square planar structure for the Pd (II) complex. The Pd complex was utilized in a carbon-carbon Suzuki coupling reaction to evaluate the application of this complex. Furthermore, the biological activity of these complexes was assessed on the proliferation of human blood lymphocytes. The results demonstrated that the ligand inhibited cell division at varying levels, with the inhibition increasing with higher concentrations. Furthermore, the Pd complex caused a prolonged arrest during mitosis at the boundary between metaphase and anaphase, leading to the suppression of proliferation in the lymphocyte cell line. The stability of the dyes was assessed in terms of light exposure and resistance to detergents.
A new novel series of metalcomplexes are prepared from reactions between 2-benzoylthio- benzimidazole (L) with metal salts of Co (II) , Fe(III) and Rh (III) , while Pd(II) complex was obtained by mixing ligandsof 2-benzoylthiobenzimidazole (L) as primary ligand and bipyridine (L/)as secondary ligand as well as palladium chloride as metal salt in an ethanoic medium. The geometry of these compounds were identified using C.H.N.microanalysis, Ultraviolet–visible, Fourier transforms infrared, magnetic susceptibility, molar conductivity and flame atomic absorption (A.A). From the dataobtained by these spectral analyses, the molecular structures for Rh and Fe complexes were proposed to be octahedral geometry. A square planar const
... Show MoreIn the current endeavor, a new Schiff base of 14,15,34,35-tetrahydro-11H,31H-4,8-diaza-1,3(3,4)-ditriazola-2,6(1,4)-dibenzenacyclooctaphane-4,7-dien-15,35-dithione was synthesized. The new symmetrical Schiff base (Q) was employed as a ligand to produce new complexes comprising Co(II), Ni(II), Cu(II), Pd(II), and Pt(II) metal-ions at a ratio of 2:1 (Metal:ligand). There have been new ligands and their complexes validated by (FTIR), (UV-visible), 1H-NMR, 13C-NMR, CHNS, and FAA spectroscopy, Thermogravimetric analysis (TG), Molar conductivity, and Magnetic susceptibility. The photostabilization technique to enhance the polymer was also used. The ligand Q and its complexes were mixed in 0.5% w/w of polyvinyl chloride in tetrahydrofuran
... Show MoreSome new heterocyclic compounds containing, cyclohexenone, indazole, isoxazoline, pyrmidine and pyrazoline ring system were prepared from chalcones (1a,b). The starting chalcones (1a,b) were obtained by a base catalyzed condensation of appropriately substituted benzaldehydes and 2-acetylbenzofuran. The reaction of the prepared chalcones with ethylacetoacetate/hydrazine hydrate, hydroxylamine hydrochloride, urea, thiourea, hydrazine hydrate, phenyl hydrazine or hydrazide derivatives gave the mentioned heterocycles. All synthesized compounds have been characterized by physical and spectral methods.
The snthesis and characterization of cobalt(II), nickel(II), copper(II) and zinc(II) complexes of azo ligand 4-[(5-acetyl-2-aminophenyl)- diazenyl]-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one derived from 4-aminoantipyrine and 4-aminoacetophenone are reported. The nature of the compounds have been studied followed by mole ratio and methods of continuous contrast, Beer′s law followed during a condensation rate (1 × 10-4 – 3 × 10-4 M). The analytical data showed that all the complexes are in 1:2 metal-ligand ratio. An octahedral geometry have been suggested for all the compounds and biological studies of all the complexes were evaluated against different types of antimicrobial strains.
Reaction of Na2PdCl4 with benz-1,3-imidazole-2-thione or (bzimtH) benz-1,3-thiazoline2-thione (bztztH) in ethanol / NE3 afford complexes of the type [Pd(bzimt)2](1) and [Pd(bztzt)2](2) respectively. Treatment of [Pd(L)2] L= bzimt or bztzt with bidentate ligands (N^N) where N^N= bipyridine (Bipy) , phenanthroline (Phen) , ethylene diamine , or N,N′dimethylethylene diamine afford mononuclear complexes of the type [PdL2(N^N)]. The bzimt and bztzt ligands are coordinated as bidentate chelating ligands through the S and N in (1) and (2) whereas bonded as a monodentate fashion via the sulfur atom in other complexes. The prepared complexes were characterized by elemental CHN analysis, ir and 1H nmr spectra.
The research includes the synthesis and identification of the mixed ligands complexes of M 2 Ions in general composition ,[M(Leu) 2 (SMX)] Where L leucine (C 6 H 13 NO 2 )symbolized (LeuH) as a primary ligand and Sulfamethoxazole C 10 H 11 N 3 O 3 S) symbolized (SMX)) as a secondary ligand . The ligands and the metal chlorides were brought in to reaction at room temperature in(v/v) ethanol /water as solvent containing NaOH. The reaction required the following [(metal: 2(Na Leu --): (SMX )] molar ratios with M(II) ions, Were M ( Mn ( II),Co (II),Ni(II),Cu( II),Zn (II),Cd(II)and Hg( The UV Vis and magnetic moment data revealed an octahedral geometry around M(II), The conductivity data show a non electrolytic nature of the complexes . The
... Show MoreThe formation of a Schiff-base with N2O2 donor atoms derived from the hydrazine segment and its metal complexes are reported. The Schiff-base ligand; N’-((1R,2S,4R,5S,Z)-2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9-ylidene)furan-2-carbohydrazide (HL) was prepared from the reaction of furan-2-carbohydrazide with (1R, 2R, 4R, 5S)-2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9-one (M1) in ethanol medium. The reaction of the title ligand with selected metal ions Cr(III), Mn(II), Ni(II), Cu(II), Zn(II) and Cd(II) gave complexes with the general formula [M(L)Cl2], (where: M = Cr(III), Mn(II), Ni(II), Cu(II), Zn(II) and Cd(II)). Spectroscopic analyses Fourier transform infrared (FT-IR), Nuclear Magnetic Resonance (NMR) Carbon-13 nuclear magnetic res
... Show MoreCopper oxide (CuO) nanoparticles were synthesized through the thermal decomposition of a copper(II) Schiff-base complex. The complex was formed by reacting cupric acetate with a Schiff base in a 2:1 metal-to-ligand ratio. The Schiff base itself was synthesized via the condensation of benzidine and 2-hydroxybenzaldehyde in the presence of glacial acetic acid. This newly synthesized symmetric Schiff base served as the ligand for the Cu(II) metal ion complex. The ligand and its complex were characterized using several spectroscopic methods, including FTIR, UV-vis, 1H-NMR, 13C-NMR, CHNS, and AAS, along with TGA, molar conductivity and magnetic susceptibility measurements. The CuO nanoparticles were produced by thermally decomposing the
... Show MoreThe present work involved a study the effect of cobalt(II) complex with formula [CoL(H2O)NO3] .4ETOH where L=Nitro [5-(P-nitro phenyl) -4-phenyl-1,2,4 traizole-3-dithiocarbamato hydrazide] aqua. (4) Ethanol and anti-cancer drug - cyclophosphamide on specific activity of two liver enzymes (GPT,ALP) by utilizing an in vivo system in female mice. On the enzymatic level an inhibition in the activity of GPT was noticed in different body organs such as liver, kidney and lung. The inhibition was noticed in both test and cyclophosphamide drug (cp). Mice were treated with three doses of cyclophosphamide (90,180, 250) ?g/ mouse for three days. The same doses were used for the cobalt (II) complex. The liver shows the highest rate of(GPT) inhibition co
... Show More