A novel ligand, (E)-5-((2-hydroxy-4,6-dimethylphenyl)diazenyl)-2,3-dihydrophthalazine-1,4- dione, was synthesized through the reaction of 3,5-dimethylphenol with the diazonium salt of 5-amino-2,3-dihydrophthalazine-1,4-dione. The ligand underwent characterization through the utilization of diverse spectroscopic methods, including UV-Vis, FT-IR, 13C, and 1H-NMR, alongside Mass spectroscopy and micro elemental analysis (Carbon, Hydrogen, Nitrogen, and Oxygen). Metal chelates of transition metals were prepared and analyzed using elemental analysis, mass spectra, atomic absorption, UV-Vis, FT-IR spectral analysis, as well as conductivity and magnetic measurements. The investigation into the compounds’ nature was conducted by utilizing mole ratio and continuous contrast methods, where Beer’s law was adhered to over a concentration range of 1×10−4 - 3×10−4 mol/L. The determination of the molar absorptivity of the compound solutions was carried out. Analytical data analysis indicated that all complexes demonstrated a metal-ligand ratio of 1:2, with the exception of the palladium complex, which exhibited a 1:1 ratio. Physicochemical data indicated an octahedral structure for the Pt (IV) and Ni (II) complexes and a square planar structure for the Pd (II) complex. The Pd complex was utilized in a carbon-carbon Suzuki coupling reaction to evaluate the application of this complex. Furthermore, the biological activity of these complexes was assessed on the proliferation of human blood lymphocytes. The results demonstrated that the ligand inhibited cell division at varying levels, with the inhibition increasing with higher concentrations. Furthermore, the Pd complex caused a prolonged arrest during mitosis at the boundary between metaphase and anaphase, leading to the suppression of proliferation in the lymphocyte cell line. The stability of the dyes was assessed in terms of light exposure and resistance to detergents.
1,3,4-oxadiazole-5-thion ring (2) successfully formed at position six of 2-methylphenol and five of their thioalkyl (3a-e). Furthermore 6-(5-(Aryl)-1,3,4-oxadiazol-2-yl)-2-methylphenol (5a-i) were formed at position six by two method. The first method was from cyclization their corresponding hydrazones (4a-e) of 2-hydroxy-3-methylbenzohydrazide (1) using bromine in glacial acetic acid. The second method was from cyclization the hydrazide with aryl carboxylic acid in the presence of phosphorusoxy chloride. The newly synthesized compounds were characterized from their IR, NMR and mass spectra. The antioxidant properties of these compounds were screened by 2,2-Diphenyl-1-picrylhydrazide (DPPH) and ferric reducing antioxidant power (FRAP) assay
... Show More1, 3, 4-oxadiazole-5-thion ring (2) successfully formed at position six of 2-methylphenol and five of their thioalkyl (3a-e). Furthermore 6-(5-(Aryl)-1, 3, 4-oxadiazol-2-yl)-2-methylphenol (5a-i) were formed at position six by two method. The first method was from cyclization their correspondinghydrazones (4a-e) of 2-hydroxy-3-methylbenzohydrazide (1) using bromine in glacial acetic acid. The second method was from cyclization the hydrazide with aryl carboxylic acid in the presence of phosphorusoxy chloride. The newly synthesized compounds were characterized from their IR, NMR and mass spectra. The antioxidant properties of these compounds were screened by 2, 2-Diphenyl-1-picrylhydrazide (DPPH) and ferric reducing antioxidant power (FRAP) a
... Show MoreAn antibacterial and antifungal piperonal-derived compound and its Rh(III), Pd(II), Pt(IV), and Cd(II) metal complexes were synthesized and characterized by spectroscopic methods, conductivity, metal analyses and magnetic moment measurements. The nature of the complexes formed in ethanolic solution was studied following the molar ratio method. From the spectral studies, octahedral geometry was suggested for rhodium (III) and platinum (IV) complexes, while a square planer structure was suggested for palladium (II) complex and a tetrahedral geometry for cadmium (II) complex. Structural geometries of these compounds were also suggested in gas phase by using hyperchem-8 program for the molecular mechanics and semi-empirical calculations.
... Show MoreA new ligand [N-(4-nitrobenzoylamino)-thioxomethyl] phenylalanine is synthesized by reaction of 4-nitrobenzoyl isothiocyanate with phenylalanine (1:1). It is characterized by micro elemental analysis (C.H.N.S.), FT-IR, (UV-Vis) and 1H and 13CNMR spectra. Some metals ions complexes of this ligand were prepared and characterized by FT-IR, UV-Visible spectra, conductivity measurements, magnetic susceptibility and atomic absorption. From results obtained, the following formula [M(NBA)2] where M2+ = Mn, Co, Ni, Cu, Zn, Pd, Cd and Hg, the proposed molecular structure for these complexes as tetrahedral geometry, except copper and palladium complexes are have square planer geometry.
A new ligand [4-Methoxy -N-(pyrimidine-2-ylcarbamothioyl) benzamide] (MPB) was synthesized by reactioniofi(4-Methoxyibenzoyliisothiocyanate)withi(2-aminopyri-midine). The Ligand was characterized by elemental micro analysis (C.H.N.S),(FT-IR) (UV- Vis) and (1Hi,13CNMR)spectra. Some transition metals complexes of this ligand were prepared and characterized by (FT-IR, UV-Vis) spectra conductivity measurements magnetic susceptibility and atomic absorption. From the obtained results the molecular formula of all complexes was suggested to be [M(MPB)2Cl2] (M+2i=Cu, Mn, Co ,Ni ,Zn ,Cd and Hg),the proposed geometrical structure for all complexes was an octahedral.
A new ligand [N-(3-acetylphenylcarbamothioyl)-4-chlorobenzamide] (CAD) was synthesized by reaction of 4-Chlorobenzoyl isothiocyanate with 3-amino acetophenone, The ligand was characterized by elemental micro analysis C.H.N. S., FT-IR, UV-Vis and 1H,13C- NMR spectra, some transition metals complexes of this ligand were prepared and characterized by FT-IR, UV-Vis spectra, conductivity measurements, magnetic susceptibility and atomic absorption, From obtained results the molecular formula of all prepared complexes were [M(CAD)2(H2O)2]Cl2 (M+2 =Mn, Co, Ni, Cu, Zn, Cd and Hg),the proposed geometrical structure for all complexes were octahedral.
A new ligand [N-(4-nitrobenzoylamino)-thioxomethyl] phenylalanine is synthesized by reaction of 4-nitrobenzoyl isothiocyanate with phenylalanine (1:1). It is characterized by micro elemental analysis (C.H.N.S.), FT-IR, (UV-Vis) and 1H and 13CNMR spectra. Some metals ions complexes of this ligand were prepared and characterized by FT-IR, UV-Visible spectra, conductivity measurements, magnetic susceptibility and atomic absorption. From results obtained, the following formula [M(NBA)2] where M2+ = Mn, Co, Ni, Cu, Zn, Pd, Cd and Hg, the proposed molecular structure for these complexes as tetrahedral geometry, except copper and palladium complexes are have square planer geometry.
A new ligand [N-(3-acetylphenylcarbamothioyl)-4-chlorobenzamide] (CAD) was synthesized by reaction of 4-Chlorobenzoyl isothiocyanate with 3-amino acetophenone, The ligand was characterized by elemental micro analysis C.H.N. S., FT-IR, UV-Vis and 1H,13C- NMR spectra, some transition metals complexes of this ligand were prepared and characterized by FT-IR, UV-Vis spectra, conductivity measurements, magnetic susceptibility and atomic absorption, From obtained results the molecular formula of all prepared complexes were [M(CAD)2(H2O)2]Cl2 (M+2 =Mn, Co, Ni, Cu, Zn, Cd and Hg),the proposed geometrical structure for all complexes were octahedral
This research deals with an important grammatical section of the Qur'anic grammar, which is the working names the work of acts in the Quranic grammar in the studies of Iraqi researchers from 1968 to 200 AD.
The study of working names working verb in the Koran of the important studies, especially among Iraqi researchers, the Iraqi researcher has presented detailed studies related to working names particles action verb in the Koran, and my research is studying this important grammatical section of the Koranic grammar, which is the working names working verb in The Holy Quran in the books of Iraqi researchers and their theses from 1968-2000. I studied in the preface working names of the act, and what the Iraqi res