Polyimide/MWCNTs nanocomposites have been fabricated by solution mixing process. In the present study, we have investigated electrical conductivity and dielectric properties of PI/MWCNT nanocomposites in frequency range of 1 kHz to 100 kHz at different MWCNTs concentrations from 0 wt.% to 15 wt.%. It has been observed that the electrical conductivity and dielectric constants are enhanced significantly by several orders of magnitude up to 15 wt.% of MWCNTs content. The electrical conductivity increases as the frequency is increased, which can be attributed to high dislocation density near the interface. The rapid increase in the dielectric constant at a high MWCNTs content can be explained by the formation of a percolative path of the conducting network through the sample for a concentration corresponding to the percolation threshold. The high dielectric constant at a low frequency (1 kHz) is thought to originate from the space charge polarization mechanism. I-V characteristics of these devices indicate a significant increase in current with an increase in multi-walled carbon nanotube concentration in the composites. The SEM images show improved dispersion of MWCNTs in the PI matrix; this is due to the strong interfacial interactions.
Cracking of soils affects their geotechnical properties and behavior such as soil strength and stability. In this paper, 2D Electrical Resistivity Imaging Method, as a non-invasive technique, was adopted to investigate the effect of soil cracks of a centemetric scale on resistivity of sandy soil. The electrical resistivity measurements were carried out using ABEM SAS 300C Terrameter system at a laboratory scale using Wenner array. The measurements were interpreted using horizontal profiles, forward modeling and 2D inverse resistivity sections. The results showed that soil cracks cause significant changes in soil resistivity. These changes can be attributed to the high resistivity contrast between the highly resistive air-filled cracks an
... Show MoreA laboratory investigation of six different tests were conducted on silty clay soil spiked with lead in concentrations of 1500 mg/kg. A constant DC voltage gradient of 1 V/cm was applied for all these tests with duration of 7 days remediation process for each test. Different purging solutions and addition configurations, i.e. injection wells, were investigated experimentally to enhance the removal of lead from Iraqi soil during electro-kinetic remediation process. The experimental results showed that the overall removal efficiency of lead for tests conducted with distilled water, 0.1 M acetic acid, 0.2 M EDTA and 1 M ammonium citrate as the purging solutions were equal to 18 %, 37 %, 42 %, and 29 %, respectively. H
... Show MoreNew mixed ligand complexes of some metal ions Zn(II), Cd(II) and Hg(II) were prepared by reacting with mixture of two bidentate ligands [ HL = (P-methyl anilino) –P– chloro phenyl acetonitrile and en = ethylene diamine] in a molar ratio of 1:1:1[ M : HL : en] in ethanol . The ligand HL was previously prepared by Strecker’s procedure which includes the reaction of p- toluidine with P- chlorobenzaldehyde in the presence of KCN in acidic medium. The structures of new compounds were identified by elemental analyses, atomic absorption and thermal analyses TG/DTG in addition to FTIR and U.V-VIS. Spectra. The electrical conductivity measurements of metal complexes were also determined. From the obtained data the octahedral structure was s
... Show MoreThe study aims to identify the mechanical and electrical activities of the heart according to the energy systems of advanced players and to detect the differences between the energy systems in terms of the mechanical and electrical activities of the heart for advanced players. It was clear from the results of the significance of the differences between the three groups according to the energy systems of the advanced players in all research variables that (the non-oxygenic system "Lactic"), which represents the advanced players in the arches (800 m, 1500 m) was the first in most tests of mechanical and electrical activities of the heart, which is (Margaria-Kalamen, Wingate, systolic muscle strength of the heart FC, Stroke Volume SV
... Show MoreThis research calculated the effect of partial replacement of Trillium with tin by weight ratios x=0, 5, 10, 15, and 20 of the weight of manufactured samples on the thermal conductivity coefficient of Se60Te40-xSnx chalcogenide glasses. The thermal conductivity coefficient of the samples was calculated using a disk- Lee. The results showed that increasing the concentration of tin improves the thermal insulation ability by decreasing the thermal conductivity value and then determining the optimal weight ratios at which a large thermal insulation is obtained.
The electrical resistivity as a function of temperature was studied. The electrical resistivity (rd.c) was calculated as a function of temperature for all
... Show MoreIn the present study, activated carbon supported metal oxides was prepared for thiophene removal from model fuel (Thiophene in n-hexane) using adsorptive desulfurization technique. Commercial activated carbon was loaded individually with copper oxide in the form of Cu2O/AC. A comparison of the kinetic and isotherm models of the sorption of thiophene from model fuel was made at different operating conditions including adsorbent dose, initial thiophene concentration and contact time. Various adsorption rate constants and isotherm parameters were calculated. Results indicated that the desulfurization was enhanced when copper was loaded onto activated carbon surface. The highest desulfurization percent for Cu2O/AC and o
... Show MoreHighly-fluorescent Carbon Quantum Dots (CQDs) are synthesized in simple step by hydrothermal carbonization method of natural precursor such as orange juice as a carbon source. Hydrothermal method for synthesized CQDs requires simple and inexpensive equipment and raw materials, thus this method are now common synthesis method. The prepared CQDs have ultrafine size up to few nanometers and several features such as high solubility in water, low toxicity, high biocompatibility, photo-bleaching resistant, Chemical inertness and ease of functionalization which qualifies it for use in many applications such as bio-imaging, photo-labeling and photo-catalysis.
This research demonstrates the
... Show MoreAn experiment was carried out to study the effect of soil organic carbon (SOC) and soil texture on the distance of the wetting front, cumulative water infiltration (I), infiltration rate (IR), saturated water conductivity (Ks), and water holding capacity (WHC). Three levels ( 0, 10, 20, and 30 g OC kg-1 ) from organic carbon (OC) were mixed with different soil materials sandy, loam, and clay texture soils. Field capacity (FC) and permanent wilting point (PWP) were estimated. Soil materials were placed in transparent plastic columns(12 cm soil column ), and water infiltration(I) was measured as a function of time, the distance of the wetting front and Ks. Results showed that advance we