Wireless sensor applications are susceptible to energy constraints. Most of the energy is consumed in communication between wireless nodes. Clustering and data aggregation are the two widely used strategies for reducing energy usage and increasing the lifetime of wireless sensor networks. In target tracking applications, large amount of redundant data is produced regularly. Hence, deployment of effective data aggregation schemes is vital to eliminate data redundancy. This work aims to conduct a comparative study of various research approaches that employ clustering techniques for efficiently aggregating data in target tracking applications as selection of an appropriate clustering algorithm may reflect positive results in the data aggregation process. In this paper, we have highlighted the gains of the existing schemes for node clustering based data aggregation along with a detailed discussion on their advantages and issues that may degrade the performance. Also, the boundary issues in each type of clustering technique have been analyzed. Simulation results reveal that the efficacy and validity of these clustering-based data aggregation algorithms are limited to specific sensing situations only, while failing to exhibit adaptive behavior in various other environmental conditions.
Background: Kinesiologists, Physical Anthropologists, and Anatomists have all long been captivated by the structure and development of the superficial forearm flexor, the Palmaris longus.
Objective: To study the effect of Palmaris Longus on certain handwriting skills.
Subjects and Methods: Three Palmaris Longus occurrence tests were conducted on 200 students (100 males and 100 females) affiliated to Colleges of Medicine of Baghdad University then the participants were tested for certain handwriting skills to correlate the presence of Palmaris Longus in the dominant side with handwriting.
Results: 89% of all subject
... Show MoreIn this paper, the Normality set will be investigated. Then, the study highlights some concepts properties and important results. In addition, it will prove that every operator with normality set has non trivial invariant subspace of .
The notion of a Tˉ-pure sub-act and so Tˉ-pure sub-act relative to sub-act are introduced. Some properties of these concepts have been studied.
Skull image separation is one of the initial procedures used to detect brain abnormalities. In an MRI image of the brain, this process involves distinguishing the tissue that makes up the brain from the tissue that does not make up the brain. Even for experienced radiologists, separating the brain from the skull is a difficult task, and the accuracy of the results can vary quite a little from one individual to the next. Therefore, skull stripping in brain magnetic resonance volume has become increasingly popular due to the requirement for a dependable, accurate, and thorough method for processing brain datasets. Furthermore, skull stripping must be performed accurately for neuroimaging diagnostic systems since neither non-brain tissues nor
... Show MoreBackground: spontaneous abortion constitutes one of the most important adverse pregnancy outcomes affecting human reproduction, and its risk factors are not only affected by biological, demographic factors such as age, gravidity, and previous history of miscarriage,but also by individual women’s personal social characteristics, and by the larger social environment. Objective:To identifyEnvironmental effects on Women's with Spontaneous Abortion. Methodology:Non-probability(purposive sample)of(200) women, who were suffering from spontaneous abortion in maternity unitfrom four hospitals at Baghdad City which include Al-ElwiaMaternity Teaching Hospital, and Baghdad Teaching Hospital at Al-Russafa sector. Al–karckhMaternityHospita
... Show MoreIn this paper we describe several different training algorithms for feed forward neural networks(FFNN). In all of these algorithms we use the gradient of the performance function, energy function, to determine how to adjust the weights such that the performance function is minimized, where the back propagation algorithm has been used to increase the speed of training. The above algorithms have a variety of different computation and thus different type of form of search direction and storage requirements, however non of the above algorithms has a global properties which suited to all problems.