Preferred Language
Articles
/
eBb2j4oBVTCNdQwCD59g
An Efficient Mixture of Deep and Machine Learning Models for COVID-19 and Tuberculosis Detection Using X-Ray Images in Resource Limited Settings
...Show More Authors

Scopus Crossref
View Publication
Publication Date
Wed May 10 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
X-ray Data and Transition Temperature Measurements of Ca Doped Bi2Sr2La2Cu3O10+δ Superconductor
...Show More Authors

We studied the effect of Ca- doping on the properties of Bi-based superconductors by
adding differ ent amounts of CaO
to the Bi
2
Sr2La2-xCaxCu3O10+δ
compound. consequently, we
obtained three samples A,B and C with x=0.0, 0.4 and 0.8 respectively. The usual solid-state
reaction method has been applied under optimum conditions. The x-ray diffraction analy sis
showed that the samples A and B have tetragonal structures conversely the sample C has an
orthorhombic structure. In addition XRD analysis show that decreasing the c-axis lattice
constant and thus decreasing the ratio c/a for samples A,B and C resp ectively. The X-ray
florescence proved that the compositions of samples A,B and C with the ra

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 22 2023
Journal Name
Mesopotamian Journal Of Big Data
Parallel Machine Learning Algorithms
...Show More Authors

 To expedite the learning process, a group of algorithms known as parallel machine learning algorithmscan be executed simultaneously on several computers or processors. As data grows in both size andcomplexity, and as businesses seek efficient ways to mine that data for insights, algorithms like thesewill become increasingly crucial. Data parallelism, model parallelism, and hybrid techniques are justsome of the methods described in this article for speeding up machine learning algorithms. We alsocover the benefits and threats associated with parallel machine learning, such as data splitting,communication, and scalability. We compare how well various methods perform on a variety ofmachine learning tasks and datasets, and we talk abo

... Show More
View Publication
Scopus (23)
Crossref (15)
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Intelligent Systems
A study on predicting crime rates through machine learning and data mining using text
...Show More Authors
Abstract<p>Crime is a threat to any nation’s security administration and jurisdiction. Therefore, crime analysis becomes increasingly important because it assigns the time and place based on the collected spatial and temporal data. However, old techniques, such as paperwork, investigative judges, and statistical analysis, are not efficient enough to predict the accurate time and location where the crime had taken place. But when machine learning and data mining methods were deployed in crime analysis, crime analysis and predication accuracy increased dramatically. In this study, various types of criminal analysis and prediction using several machine learning and data mining techniques, based o</p> ... Show More
View Publication
Scopus (9)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2023
Journal Name
8th Engineering And 2nd International Conference For College Of Engineering – University Of Baghdad: Coec8-2021 Proceedings
Sentiment analysis in arabic language using machine learning: Iraqi dialect case study
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Wed Nov 08 2023
Journal Name
Technologies And Materials For Renewable Energy, Environment, And Sustainability: Tmrees23fr
Analysis of x-ray diffraction lines of cuprous oxide nanoparticles by using variance analysis method
...Show More Authors

In this study, the results of x-ray diffraction methods were used to determine the Crystallite size and Lattice strain of Cu2O nanoparticles then to compare the results obtained by using variance analysis method, Scherrer method and Williamson-Hall method. The results of these methods of the same powder which is cuprous oxide, using equations during the determination the crystallite size and lattice strain, It was found that the results obtained the values of the crystallite size (28.302nm) and the lattice strain (0.03541) of the variance analysis method respectively and for the Williamson-Hall method were the results of the crystallite size (21.678nm) and lattice strain (0.00317) respectively, and Scherrer method which gives the value of c

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
The Prediction of COVID 19 Disease Using Feature Selection Techniques
...Show More Authors
Abstract<p>COVID 19 has spread rapidly around the world due to the lack of a suitable vaccine; therefore the early prediction of those infected with this virus is extremely important attempting to control it by quarantining the infected people and giving them possible medical attention to limit its spread. This work suggests a model for predicting the COVID 19 virus using feature selection techniques. The proposed model consists of three stages which include the preprocessing stage, the features selection stage, and the classification stage. This work uses a data set consists of 8571 records, with forty features for patients from different countries. Two feature selection techniques are used in </p> ... Show More
View Publication Preview PDF
Scopus (27)
Crossref (20)
Scopus Crossref
Publication Date
Tue Aug 01 2023
Journal Name
Iop Conference Series: Earth And Environmental Science
Assessment of X-Ray Effects on HF Radio Communications
...Show More Authors
Abstract<p>This study aims to determine the effect of x-ray radiation resulting from solar flares in high-frequency radio wave communications through the ionosphere and to study the radio blackout events that occur over Iraq, located within (38,28) latitude, and (38,49) longitude. Using X-ray data during strong X flares and radio wave absorption data across the D ionosphere for 10 years from 2012 to 2021. The study concluded that there were 43 events of x-flare, most of which were during years of high solar activity. All of these flares produced X-rays that caused a radio blackout, R3 and only 13 events affected Iraq.</p>
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Wed Mar 01 2017
Journal Name
2017 Annual Conference On New Trends In Information &amp; Communications Technology Applications (ntict)
An efficient color quantization using color histogram
...Show More Authors

View Publication
Scopus (6)
Crossref (5)
Scopus Crossref
Publication Date
Mon Nov 30 2020
Journal Name
Iraqi Geological Journal
EXPERIMENTAL STUDY OF MICRO SILICA BEHAVIOR AND ITS EFFECT ON IRAQI CEMENT PERFORMANCE BY USING X-RAY FLUORESCENCE ANALYSIS
...Show More Authors

The cement slurry is a mixture of cement, water and additives which is established at the surface for injecting inside hole. The compressive strength is considered the most important properties of slurry for testing the slurry reliability and is the ability of slurry to resist deformation and formation fluids. Compressive strength is governed by the sort of raw materials that include additives, cement structure, and exposure circumstances. In this work, we use micro silica like pozzolanic materials. Silica fume is very fine noncrystalline substantial. Silica fume can be utilized like material for supplemental cementations for increasing the compressive strength and durability of cement. Silica fume has very fine particles size less

... Show More
View Publication
Crossref
Publication Date
Thu Sep 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating Mixture of Linear Regression Models with Application
...Show More Authors

 A mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the

... Show More
View Publication Preview PDF
Crossref