Back ground: Glass ionomer materials lack resistance to wear and pressure and are susceptible to moisture during the initial stages of setting and dehydration. So this study was done to assess diametral tensile strength and microhardness of glass ionomer reinforced by different amounts of hydroxyapatite. Materials and methods: In this study a hydroxyapatite material was added to glass monomer cement at different ratios: 10%, 15%, 20%, 25% and 30% (by weight). The diametral tensile strength test described by the British standard specification for zinc polycarboxylate cement was used in this study and the microhardness test was performed using Vickers microhardness testing machine and the microhardness values were calculated and statistical comparison was performed on the tested groups. Results: The group of glass ionomer cement that contains 20% hydroxyapatite has higher diametral tensile strength and microhardness values than other groups of this study. Also the results showed that the group of glass ionomer cement without hydroxyapatite has the lowest values of diametral tensile strength and microhardness than other groups. The groups of glass ionomer cement with 10%, 15%, 25% and 30% hydroxyapatites also showed increasing in diametral tensile strength and microhardness values in comparison with group of glass ionomer cement without hydroxyapatite. Conclusion: The addition of hydroxyapatite to conventional glass ionomer cement will increase its diametral tensile strength and microhardness
Investigating the thermal and electrical gains and efficiencies influence the designed photovoltaic thermal hybrid collector (PVT) under different weather conditions. The designed system was manufactured by attaching a fabricated cooling system made of serpentine tubes to a single PV panel and connecting it to an automatic controlling system for measuring, monitoring, and simultaneously collecting the required data. A removable glass cover had been used to study the effects of glazed and unglazed PVT panel situations. The research was conducted in February (winter) and July (summer), and March for daily solar radiation effects on efficiencies. The results indicated that electrical and thermal gains increased by the incre
... Show MoreThe complexity and partially defined nature of jet grouting make it hard to predict the performance of grouted piles. So the trials of cement injection at a location with similar soil properties as the erecting site are necessary to assess the performance of the grouted piles. Nevertheless, instead of executing trial-injected piles at the pilot site, which wastes money, time, and effort, the laboratory cement injection devices are essential alternatives for evaluating soil injection ability. This study assesses the performance of a low-pressure laboratory grouting device by improving loose sandy soil injected using binders formed of Silica Fume (SF) as a chemical admixture (10% of Ordinary Portland Cement OPC mass) to di
... Show MoreThis study presents a comprehensive set of laboratory works for the examined soil layers extracted from Baghdad city (specifically from Alkadhimya, Alaitaifiya, and Alhurriya) to illustrate their engineering properties. The researchers have adopted the unified soil classification system for soil classification purposes. Also, the direct shear test was performed for soil samples with various degrees of saturation (0%, 25%, 50%, 75%, and 100%). The test results have shown a significant reduction in cohesion property with higher moisture content within soil samples. Also, a noticeable reduction in angle of internal friction value has occurred with such changes. Furthermore, it has been found that the bearing capacity of unsaturated soi
... Show MoreIn current study a computation fluid dynamic (CFD) technique was used to investigate the effect of groynes shape and spacing on the scour pattern and the maximum scour depth in open channel flow. CFD model have been validated throughout comparing the numerical results with three previous experimental studies for a single groyne located in open channel with three different shapes (L, quadrant, and parabola shapes). The comparison revealed very good agreement between numerical results of the maximum scour depth with the results of all experimental models. Moreover, investigations of the effect of multi-groynes (three groynes and four groynes) arranged in parallel with constant spacing and also with variable spacing have been done, the
... Show MoreBackground: In the present study used device jet plasma needle with atmospheric pressure which generates non thermal plasma jet to measure treatment potent with plasma against pathogenic bacteria founded in UTI was inactivated with plasma at 10 sec,
Objective:. This work included the application of the plasma produced from the system in the field of bacterial sterilization , where sample of Gram- negative bacteria (Escherichia coli) were exposed to intervals (1-10)second . Midstream Urine samples swabs were obtained from patients with urinary tract infections.
Type of the study: Cross -sectional study.
Methods: The work were used i
... Show MoreSix proposed simply supported high strength-steel fiber reinforced concrete (HS-SFRC) beams reinforced with FRP (fiber reinforced polymer) rebars were numerically tested by finite element method using ABAQUS software to investigate their behavior under the flexural failure. The beams were divided into two groups depending on their cross sectional shape. Group A consisted of four trapezoidal beams with dimensions of (height 200 mm, top width 250 mm, and bottom width 125 mm), while group B consisted of two rectangular beams with dimensions of (125 ×200) mm. All specimens have same total length of 1500 mm, and they were also considered to be made of same high strength concrete designed material with 1% volume fraction of steel fiber.
... Show MoreThis paper presents the application of nonlinear finite element models in the analysis of dappedends pre-stressed reinforced concrete girders under static loading by using ANSYS software. The girder dimensions are (4.90 m span, 0.40 m depth, 0.20 m width, 0.20 m nib depth, and 0.10 m nib length) and the parameters considered in this research are the pre-stress effect, and strand profile (straight and draped). The numerical results are compared with the experimental results of the same girders. The comparisons are carried out in terms of initial prestress effect, load- deflection curve, and failure load. Good agreement was obtained between the analytical and experimental results. Even that, the numerical model was stiffer than the experiment
... Show MoreThis paper presents the application of nonlinear finite element models in the analysis of dapped-ends pre-stressed reinforced concrete girders under static loading by using ANSYS software. The girder dimensions are (4.90 m span, 0.40 m depth, 0.20 m width, 0.20 m nib depth, and 0.10 m nib length) and the parameters considered in this research are the pre-stress effect, and strand profile (straight and draped).
The numerical results are compared with the experimental results of the same girders. The comparisons are carried out in terms of initial prestress effect, load- deflection curve, and failure load. Good agreement was obtained between the analytical and experimental results. Even that, the
... Show MoreThis study aims to investigate the behavior and strength of self-compacted ferrocement slabs under punching shear load. Experimental results of thirteen square ferrocement slabs of 500×500 mm simply supported on all edges are presented. The main parameters investigated include the volume fraction of reinforcement, slab thickness and size of load-bearing plate. The load deflection and cracking characteristics of the tested slabs are studied and compared. The test results showed that the volume fraction of wire mesh has significant effect on both ultimate load and displacement. The increase of slab thickness leads to decrease in deflection values and increase in stiffness of slabs. Both ductility and stiffness increase as the
... Show MoreThe physical, mechanical, electrical and thermal properties containing (Viscosity, curing, adhesion force, Tensile strength, Lap shear strength, Resistively, Electrical conductivity and flammability) of adhesive material that prepared from Nitrocellulose reinforced with graphite particles and aluminum streat. A comparison is made between the properties of adhesive material with varying percentage of graphite powder (0%, 25%, 30%, 35%, 40%) to find out the effect of reinforcement on the adhesive material. The ability of property an electrical was studied through the measurement of conductivity a function of temperature varying. The results of comparison have clearly shown that the increasing of conten
... Show More