This paper aims to evaluate large-scale water treatment plants’ performance and demonstrate that it can produce high-level effluent water. Raw water and treated water parameters of a large monitoring databank from 2016 to 2019, from eight water treatment plants located at different parts in Baghdad city, were analyzed using nonparametric and multivariate statistical tools such as principal component analysis (PCA) and hierarchical cluster analysis (HCA). The plants are Al-Karkh, Sharq-Dijlah, Al-Wathba, Al-Qadisiya Al-Karama, Al-Dora, Al-Rasheed, Al-Wehda. PCA extracted six factors as the most significant water quality parameters that can be used to evaluate the variation in drinking water quality and responsible for 73.389% of the variance in the data set. Based on this selection criterion, the most significant water quality parameters that can be used to evaluate the variation in drinking water quality parameters are the mineral-related parameters (e.g., Ca+2, Mg+2, salinity, hardness), the nutrient parameters (i.e., dissolved nitrate and nitrite and orthophosphate), and a physical parameter. HCA analysis was able to group water treatment plants with similar raw water and treated water quality based on the water quality data from eight WTPs into three clusters.
This paper describes a practical study on the impact of learning's partners, Bluetooth Broadcasting system, interactive board, Real – time response system, notepad, free internet access, computer based examination, and interaction classroom, etc, had on undergraduate student performance, achievement and involving with lectures. The goal of this study is to test the hypothesis that the use of such learning techniques, tools, and strategies to improve student learning especially among the poorest performing students. Also, it gives some kind of practical comparison between the traditional way and interactive way of learning in terms of lectures time, number of tests, types of tests, student's scores, and student's involving with lectures
... Show MoreThe high and low water levels in Tigris River threaten the banks of the river. The study area is located on the main stream of Tigris River at Nu’maniyah City and the length of the considered reach is 5.4 km, especially the region from 400 m upstream Nu’maniyah Bridge and downstream of the bridge up to 1250 mwhich increased the risk ofthe problemthat itheading towardsthe streetand causingdanger tonearbyareas.
The aim of this research is to identify the reason of slope collapse and find proper treatments for erosion problem in the river banks with the least cost. The modeling approach consisted of several steps, the first of which is by using “mini” JET (Jet Erosion Test) d
... Show More
This paper describes DC motor speed control based on optimal Linear Quadratic Regulator (LQR) technique. Controller's objective is to maintain the speed of rotation of the motor shaft with a particular step response.The controller is modeled in MATLAB environment, the simulation results show that the proposed controller gives better performance and less settling time when compared with the traditional PID controller.
The extraction of Cupressus sempervirens L. or cypress essential oil was studied in this paper. This cypress oil was extracted by using the hydro-distillation method, using a clevenger apparatus. Cupressus sempervirens L. leaves were collected from Hit city in Al-Anbar province – Iraq. The influences of three important parameters on the process of oil extraction; water which used as a solvent to the solid ratio (5:1 and 14:1 (ml solvent/g plant), temperature (30 to 100 °C) and processing time, were examined to obtain the best processing conditions to achieve the maximum yield of the essential oil. Also, the mathematical model was described to calculate the mass transfer coefficient. Therefore, the best conditions, that were obtained in
... Show MoreA many risk challenge in (settings hospital) are multi- bacteria are antibiotic-resistant. Some type strains that ability adhesion surface-attached bio-film census. Fifteen MRSA isolates were considered as high biofilm producers Moreover all MRSA isolates; M3, M5, M7 and M11 produced biofilms but the thickest biofilm seen M7strain. The MIC values of N. sativa oil against clinical isolates of MRSA were between (0.25, 0.5, 0.75, 1.0) μg/ml While MRSAcin (50, 75, 100, 125) µg\ ml. All biofilms treated with MRSAcin and Nigella sativa developed a presence of live cells after cultured on plate agar with inhibition zone between MIC (18 – 15) and (14- 11)mm respectively.Yet, results showed that MRSA supernatant developed a inhibitory ef
... Show MoreThe ongoing COVID‐19 pandemic caused by SARS‐CoV‐2 is associated with high morbidity and mortality. This zoonotic virus has emerged in Wuhan of China in December 2019 from bats and pangolins probably and continuing the human‐to‐human transmission globally since last two years. As there is no efficient approved treatment, a number of vaccines were developed at an unprecedented speed to counter the pandemic. Moreover, vaccine hesitancy is observed that may be another possible reason for this never ending pandemic. In the meantime, several variants and mutations were identified and causing multiple waves globally. Now the safety and efficacy of these vaccines are debatable and recommended to d
Manganese sulfate and Punica granatum plant extract were used to create MnO2 nanoparticles, which were then characterized using techniques like Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, atomic force microscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The crystal's size was calculated to be 30.94nm by employing the Debye Scherrer equation in X-ray diffraction. MnO2 NPs were shown to be effective in adsorbing M(II) = Co, Ni, and Cu ions, proving that all three metal ions may be removed from water in one go. Ni(II) has a higher adsorption rate throughout the board. Co, Ni, and Cu ion removal efficiencies were 32.79%, 75
... Show MoreThe successful implementation of deep learning nets opens up possibilities for various applications in viticulture, including disease detection, plant health monitoring, and grapevine variety identification. With the progressive advancements in the domain of deep learning, further advancements and refinements in the models and datasets can be expected, potentially leading to even more accurate and efficient classification systems for grapevine leaves and beyond. Overall, this research provides valuable insights into the potential of deep learning for agricultural applications and paves the way for future studies in this domain. This work employs a convolutional neural network (CNN)-based architecture to perform grapevine leaf image classifi
... Show More