The manual classification of oranges according to their ripeness or flavor takes a long time; furthermore, the classification of ripeness or sweetness by the intensity of the fruit’s color is not uniform between fruit varieties. Sweetness and color are important factors in evaluating the fruits, the fruit’s color may affect the perception of its sweetness. This article aims to study the possibility of predicting the sweetness of orange fruits based on artificial intelligence technology by studying the relationship between the RGB values of orange fruits and the sweetness of those fruits by using the Orange data mining tool. The experiment has applied machine learning algorithms to an orange fruit image dataset and performed a comparative study of the algorithms in order to determine which algorithm has the highest prediction accuracy. The results showed that the value of the red color has a greater effect than the green and blue colors in predicting the sweetness of orange fruits, as there is a direct relationship between the value of the red color and the level of sweetness. In addition, the logistic regression model algorithm gave the highest degree of accuracy in predicting sweetness.
The biochar prepared from sawdust raw material was applied in this study for the treatment of wastewater polluted with methyl orange dye. The effect of pH (2-11), initial concertation (50-250 mg/L) and time were studied. The isotherm of Langmuir, Frendluch and temkin models studied. The Langmuir model was the best to explain the adsorption process, maximum uptake was 136.67 mg/g at 25Co of methyl orange dye. Equilibrium reached after four hours of contact for most adsorbents.The values of thermodynamic parameters ∆G were negative at various temperatures, so the process spontaneous, while ∆H values were 16683 j/mol and ∆S values was 60.82 j/mol.k.
Business organizations have faced many challenges in recent times, most important of which is information technology, because it is widely spread and easy to use. Its use has led to an increase in the amount of data that business organizations deal with an unprecedented manner. The amount of data available through the internet is a problem that many parties seek to find solutions for. Why is it available there in this huge amount randomly? Many expectations have revealed that in 2017, there will be devices connected to the internet estimated at three times the population of the Earth, and in 2015 more than one and a half billion gigabytes of data was transferred every minute globally. Thus, the so-called data mining emerged as a
... Show MoreBrain Fingerprinting (BF) is one of the modern technologies that rely on artificial intelligence in the field of criminal evidence law. Brain information can be obtained accurately and reliably in criminal procedures without resorting to complex and multiple procedures or questions. It is not embarrassing for a person or even violates his human dignity, as well as gives immediate and accurate results. BF is considered one of the advanced techniques related to neuroscientific evidence that relies heavily on artificial intelligence, through which it is possible to recognize whether the suspect or criminal has information about the crime or not. This is done through Magnetic Resonance Imaging (EEG) of the brain and examining
... Show MoreThis research aims to clarify the importance of an accounting information system that uses artificial intelligence to detect earnings manipulation. The research problem stems from the widespread manipulation of earning in economic entities, especially at the local level, exacerbated by the high financial and administrative corruption rates in Iraq due to fraudulent accounting practices. Since earning manipulation involves intentional fraudulent acts, it is necessary to implement preventive measures to detect and deter such practices. The main hypothesis of the research assumes that an accounting information system based on artificial intelligence cannot effectively detect the manipulation of profits in Iraqi economic entities. The researche
... Show MoreThis paper presents a robust algorithm for the assessment of risk priority for medical equipment based on the calculation of static and dynamic risk factors and Kohnen Self Organization Maps (SOM). Four risk parameters have been calculated for 345 medical devices in two general hospitals in Baghdad. Static risk factor components (equipment function and physical risk) and dynamics risk components (maintenance requirements and risk points) have been calculated. These risk components are used as an input to the unsupervised Kohonen self organization maps. The accuracy of the network was found to be equal to 98% for the proposed system. We conclude that the proposed model gives fast and accurate assessment for risk priority and it works as p
... Show MoreMany academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Decision Tre
... Show MoreMany academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Deci
... Show MoreNeural cryptography deals with the problem of “key exchange” between two neural networks by using the mutual learning concept. The two networks exchange their outputs (in bits) and the key between two communicating parties ar eventually represented in the final learned weights, when the two networks are said to be synchronized. Security of neural synchronization is put at risk if an attacker is capable of synchronizing with any of the two parties during the training process.
In this study, Zizphus spina-christi leaf powder was applied for the adsorption of methyl orange. The effect of different operating parameters on the Batch Process adsorption was investigated such as solution pH (2-12), effect of contact time (0-60 min.), initial dye concentration (2-20 mg/L), effect of adsorbent dosage (0-4.5 g) and effect of temperature (20-50ᵒC). The results show a maximum removal rate and adsorption capacity (%R= 23.146, qe = 2.778 mg/g) at pH = 2 and equilibrium was reached at 40 min. The pseudo- second-order kinetics were found to be best fit for the removal process (R2 = 0.997). Different isotherm models (Langmuir, Freundlich, Dubini-Radushkevich,Temkin) were applied in this stud
... Show More