Preferred Language
Articles
/
e4a1MYYBIXToZYAL3X5G
Predicting Fruit’s Sweetness Using Artificial Intelligence—Case Study: Orange
...Show More Authors

The manual classification of oranges according to their ripeness or flavor takes a long time; furthermore, the classification of ripeness or sweetness by the intensity of the fruit’s color is not uniform between fruit varieties. Sweetness and color are important factors in evaluating the fruits, the fruit’s color may affect the perception of its sweetness. This article aims to study the possibility of predicting the sweetness of orange fruits based on artificial intelligence technology by studying the relationship between the RGB values of orange fruits and the sweetness of those fruits by using the Orange data mining tool. The experiment has applied machine learning algorithms to an orange fruit image dataset and performed a comparative study of the algorithms in order to determine which algorithm has the highest prediction accuracy. The results showed that the value of the red color has a greater effect than the green and blue colors in predicting the sweetness of orange fruits, as there is a direct relationship between the value of the red color and the level of sweetness. In addition, the logistic regression model algorithm gave the highest degree of accuracy in predicting sweetness.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Oct 01 2023
Journal Name
Baghdad Science Journal
Solid Waste Treatment Using Multi-Criteria Decision Support Methods Case Study Lattakia City
...Show More Authors

Lattakia city faces many problems related to the mismanagement of solid waste, as the disposal process is limited to the random Al-Bassa landfill without treatment. Therefore, solid waste management poses a special challenge to decision-makers by choosing the appropriate tool that supports strategic decisions in choosing municipal solid waste treatment methods and evaluating their management systems. As the human is primarily responsible for the formation of waste, this study aims to measure the degree of environmental awareness in the Lattakia Governorate from the point of view of the research sample members and to discuss the effect of the studied variables (place of residence, educational level, gender, age, and professional status) o

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Wed Aug 05 2015
Journal Name
International Journal Of Current Engineering And Technology
Water Quality Index Assessment using GIS Case study: Tigris River in Baghdad City
...Show More Authors

In this study water quality index (WQI) was calculated to classify the flowing water in the Tigris River in Baghdad city. GIS was used to develop colored water quality maps indicating the classification of the river for drinking water purposes. Water quality parameters including: Turbidity, pH, Alkalinity, Total hardness, Calcium, Magnesium, Iron, Chloride, Sulfate, Nitrite, Nitrate, Ammonia, Orthophosphate and Total dissolved solids were used for WQI determination. These parameters were recorded at the intakes of the WTPs in Baghdad for the period 2004 to 2011. The results from the annual average WQI analysis classified the Tigris River very poor to polluted at the north of Baghdad (Alkarkh WTP) while it was very poor to very polluted in t

... Show More
Publication Date
Fri Mar 31 2017
Journal Name
Al-khwarizmi Engineering Journal
Big-data Management using Map Reduce on Cloud: Case study, EEG Images' Data
...Show More Authors

Database is characterized as an arrangement of data that is sorted out and disseminated in a way that allows the client to get to the data being put away in a simple and more helpful way. However, in the era of big-data the traditional methods of data analytics may not be able to manage and process the large amount of data. In order to develop an efficient way of handling big-data, this work studies the use of Map-Reduce technique to handle big-data distributed on the cloud. This approach was evaluated using Hadoop server and applied on EEG Big-data as a case study. The proposed approach showed clear enhancement for managing and processing the EEG Big-data with average of 50% reduction on response time. The obtained results provide EEG r

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Dec 01 2019
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
دراسة حالة: Case Study
...Show More Authors

The purpose of this research is to demonstrate the impact of deposit insurance to reduce banking risks, as banks in various countries of the world face a variety of risks that led to banking and financial crises that led to the failure and bankruptcy of many of its bank, which led to the banks to find quick and appropriate solutions to get rid of these difficulties These solutions include the use of bank deposit protection system for the many risks and sequences of crises that accompanied the Iraqi banking work of thefts, forgery, embezzlement and changing and unstable circumstances. The importance of studying the subject of research through the theoretical framework of banking risks as well as the framework of consideration In order to

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
International Journal Of Literacy And Education
The availability of concepts and applications of artificial intelligence in the content of the chemistry textbook for the fourth scientific grade
...Show More Authors

View Publication
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Journal Of Global Pharma Technology
Using tobacco leaves as adsorbent for the orange-g dye removal from its aqueous solutions
...Show More Authors

The removal of commercial orange G dye from its aqueous solution by adsorption on tobacco leaves (TL) was studied in respect to different factor that affected the adsorption process. These factors including the tobacco leaves does, period of orange G adsorption, pH, and initial orange G dye concentration .Different types of isotherm models were used to describe the orange G dye adsorption onto the tobacco leaves. The experimental results were compared using Langmuir, and frundlich adsorption isotherm, the constants for these two isotherm models was determined. The results fitted frundlich model with value of correlation coefficient equal to (0.981). The capacity of adsorption for the orange G dye was carried out using various kinetic models

... Show More
Scopus (6)
Scopus
Publication Date
Mon Apr 01 2019
Journal Name
Journal Of Engineering
Removal of Methyl Orange from Aqueous Solutions by Adsorption Using Corn Leaves as Adsorbent Material
...Show More Authors

A comparative study was done on the adsorption of methyl orange dye (MO) using non-activated and activated corn leaves with hydrochloric acid as an adsorbent material. Scanning electron microscopy (SEM) and Fourier Transform Infrared spectroscopy (FTIR) were utilized to specify the properties of adsorbent material. The effect of several variables (pH, initial dye concentration, temperature, amount of adsorbent and contact time) on the removal efficiency was studied and the results indicated that the adsorption efficiency increases with the increase in the concentration of dye, adsorbent dosage and contact time, while inversely proportional to the increase in pH and temperature for both the treated and untreated corn leav

... Show More
View Publication Preview PDF
Crossref (19)
Crossref
Publication Date
Thu Nov 01 2012
Journal Name
2012 International Conference On Advanced Computer Science Applications And Technologies (acsat)
Data Missing Solution Using Rough Set theory and Swarm Intelligence
...Show More Authors

This paper presents a hybrid approach for solving null values problem; it hybridizes rough set theory with intelligent swarm algorithm. The proposed approach is a supervised learning model. A large set of complete data called learning data is used to find the decision rule sets that then have been used in solving the incomplete data problem. The intelligent swarm algorithm is used for feature selection which represents bees algorithm as heuristic search algorithm combined with rough set theory as evaluation function. Also another feature selection algorithm called ID3 is presented, it works as statistical algorithm instead of intelligent algorithm. A comparison between those two approaches is made in their performance for null values estima

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Engineering
Modeling and Control of Fuel Cell Using Artificial Neural Networks
...Show More Authors

This paper includes an experimental study of hydrogen mass flow rate and inlet hydrogen pressure effect on the fuel cell performance. Depending on the experimental results, a model of fuel cell based on artificial neural networks is proposed. A back propagation learning rule with the log-sigmoid activation function is adopted to construct neural networks model. Experimental data resulting from 36 fuel cell tests are used as a learning data. The hydrogen mass flow rate, applied load and inlet hydrogen pressure are inputs to fuel cell model, while the current and voltage are outputs. Proposed model could successfully predict the fuel cell performance in good agreement with actual data. This work is extended to developed fuel cell feedback

... Show More
View Publication Preview PDF
Publication Date
Fri Apr 22 2022
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Developing models to predicting the effect of crises on construction projects using MLR technique
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Crossref