The current study aims to demonstrate the role of strategic renewal in enhancing organizational immunity through strategic renewal mechanisms represented by (Reanimating, Rejuvenation, Venturing, and restructuring). The main idea of this study relates to the extent to which organizations’ immunity is achieved through strategic Renewal mechanisms, by measuring these dimensions with Organizational immunity represented by organizational learning, organizational memory, and organizational DNA. The study population was the headquarters of the Iraqi Ministry of Education, and the sample included (330) individuals from the upper, middle, and lower leadership levels. Several statistical methods were used to deal with the results of the questionnaire, especially the simple correlation coefficient (Pearson) and descriptive analysis methods using (SPSS.v23, AMOS.v25). The most important conclusion of the study was the presence of a clear and significant impact of strategic Renewal in building and designing the immune system of organizations.
Four complexes of Co(II),Ni(II),Cu(II) and Zn(II) with the azo ligand (4-chloro-N-(2-(dimethylamino)ethyl)-5-((2-hydroxy-4,6-dimethylphenol)diazenyl)-2-methoxybenzamide) L. The structure of ligand and complexes were confirmed on the basis of their analytical and spectral data, these dyes were tested as dyeing in cotton fabric, and also testing in light and cleaner firmness. Also, antimicrobial and antifungal activities of ligand and their complexes were evaluated and the results showed that the ZnL compound showed the higher antibacterial activity with inhibition zone of 13mm against Staphyloco-ccus epidermidis, Steptococcus sp. and Escherichia coli compared with ligand and other metal complexes .In case of ZnL compound the antifungal activ
... Show MoreNew 1,3-oxazol-5(4H)-one(3) was synthesized by cyclization of[(4-Methyl phenyl-carbonyl)amino]acetic acid (2). The starting materials were readily obtained by acylation of 2-amino acetic acid (Glycine) with 4-methyl phenyl chloride .Imidazole(4) was synthesized by reaction of compound (3) with hydrazine hydrate (99%). Compound (4) was isolated and characterized by 1HNMR , FTIR , uv-vis spectroscopy and elemental analysis (C.H.N). Compound (4) has been used as a ligand (L) to prepare a number of metal complexes with Cr(III), Mn(II), Co(II), Ni(II) , Cu(II) and Zn(II).
The prepared complexes were isolated and characterized by FTIR and Uv-vis spectroscopy elemental analysis (C.H.N), flame atomic absorption technique, as well as magnetic
Synthesis of new heterocyclic compounds containing four five-membered rings together was the main goal of this work. The new derivatives of [tetrakis (1,2,4-triazole /1,3,4-thiadiazole /1,3,4-oxadiazole][bis-(benzene-1,3,5-triyl)] dioxymethylene A7-A18 were synthesized by the reaction of [bis-(dimethyl 5-yl-isophthalate)] dioxymethylene compound A1 which was previously prepared from the reaction of 1,2-dibromomethan and dimethyl 5-hydroxyisophthalate, then treated with hydrazine hydrate to yield the corresponding acid hydrazide A2. In the next step, compound A2 was refluxed with 4-substituted isothiocyanate to give substituted thiosemicarbazides A3-A6. The treatment of the latter compounds in basic medium of 2M o
... Show MoreA new chelate complexes of Co(II),Ni(II),Zn(II) and Cd(II) were prepared by reacting these ions with the ligand 2-[4- Carboxy methyl phenyl azo]-4,5-diphenyl imidazole (4CMeI) The preparation were conducted after fixing the optimum conditions such as (pH) and concentration .UV- visible spectra of these complex solutions were studied for a range of (pH) and concentration which obey lampert-Beers Law.The structures of complexes were deduced according to mole ratio method which were obtained from the spectroscopic studies of the complex solutions .The ratios of metal: ligand obtained were (1:2) for all complexes..(UV-Vis) absorption spectra and The infrared spectra of the chelating complexes were studied ,this may indicate that coordination be
... Show MoreThe formation of Co(II), Ni(II), Cu(II), Zn(II), and Cd(II)-complexes (C1-C5) respectively was studied with new Schiff base ligand [benzyl(2-hydroxy-1-naphthalidene) hydrazine carbodithioate derived from reaction of 2-hydroxy-1-naphthaldehyde and benzyl hydrazine carbodithioate. The suggested structures of the ligand and its complexes have been determined by using C.H.N.S analyzer, thermal analysis, FT-IR, U.V-Visible, 1HNMR, 13CNMR , conductivity measurement , magnetic susceptibility and atomic absorption. According to these studies, the ligand coordinates as a tridentate with metal ions through nitrogen atom of azomethane , oxygen atom of hydroxyl, and sulfur atom of thione
... Show MoreThe Co (II), Ni (II) ,Cu(II), Zn(II) ,Cd(II) and Hg(II) complexes of mixed of amino acid (L-Alanine ) and Trimethoprim antibiotic were synthesized. The complexes were characterized using melting point, conductivity measurement and determination the percentage of the metal in the complexes by flame (AAS). Magnetic susceptibility, Spectroscopic Method [FTIR and UV-Vis]. The general formula have been given for the prepared mixed ligand complexes [M(Ala)2(TMP)(H2O)] where L- alanine (abbreviated as (Ala ) = (C5H9NO2) deprotonated primary ligand, L- Alanine ion .= (C5H8NO2 -) Trimethoprim (abbreviated as (TMP ) = C10H11N3O3S M(II) = Co (II),Ni(II) ,Cu(II), Zn(II) ,Cd(II) and Hg(II). The results showed that the deprotonated L- Alanine by KOH (Ala
... Show MoreAn abstract is a brief summary of a research article, thesis, Schiff base ligand (L) was prepared by the reaction of 4-aminantipyrine with o-phenylenediamine, the prepared ligand characterized by Micro elemental Analysis, FT. IR, UV-Vis, and 1H,13C-NMR spectroscopy.complexes of Mn(II), Co(II), Ni(II), Cu(II) and Hg(II) with Schiff base and 1,10-phenanthroline (Phen) have been investigated in aqueous ethanol with (1:1:1) (M:L:Phen). The prepared complexes were characterized using flame atomic absorption, (C. H. N) Analysis, FT. IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. From the obtained data the octahedral structure was suggested for all complexes. The biological screening effects o
... Show MoreThis research explores the use of solid polymer electrolytes (SPEs) as a conductive medium for sodium ions in sodium‐ion batteries, presenting a possible alternative to traditional lithium‐ion battery technology. The researchers prepare SPEs with varying molecular weight ratios of polyacrylonitrile (PAN) and sodium tetrafluoroborate (NaBF4) using a solution casting method with dimethyl formamide as the solvent. Through optical absorbance measurements, we identified the PAN:NaBF4 (80:20) SPE composition as having the lowest energy band gap value (4.48 eV). This composition also exhibits high thermal stability based on thermogravimetric analysis results.