In order to promote sustainable steel-concrete composite structures, special shear connectors that can facilitate deconstruction are needed. A lockbolt demountable shear connector (LB-DSC), including a grout-filled steel tube embedded in the concrete slab and fastened to a geometrically compatible partial-thread bolt, which is bolted on the steel section's top flange of a composite beam, was proposed. The main drawback of previous similar demountable bolts is the sudden slip of the bolt inside its hole. This bolt has a locked conical seat lug that is secured inside a predrilled compatible counter-sunk hole in the steel section's flange to provide a non-slip bolt-flange connection. Deconstruction is achieved by demounting the tube from the top of the slab by unfastening using a simple modified wrench. The mechanical behaviour of the proposed connector is assessed by four pushout tests that were conducted per Eurocode 4 recommendations. The tests showed high shear resistance, and high stiffness as compared to other DSCs, while the slip capacity results classified the LB-DSC as a ductile shear connector according to Eurocode 4. A refined nonlinear finite element model (FEM) was validated through the tests and reliably reproduced the experimental behaviour. Consequently, the calibrated FEM model was applied to carry out extensive parametric analyses to investigate the strength and geometry effects of concrete slab, infilled grout, tube, and bolt on the structural behaviour of the LB-DSC. On the basis of numerical and experimental results, a design equation is derived to predict the shear resistance of the LB-DSC.
ABSTRACT Background: Bracket rebonding is a common problem in orthodontics which may result in many drawbacks. The aims of this study were to evaluate the effects of application of two enamel protective agents “Icon†and “ProSeal†on shear bond strength before and after rebonding of stainless steel orthodontic brackets using conventional orthodontic adhesive and to assess the site of bond failure. Materials and methods: Fifty sound extracted human upper first premolar teeth were selected and randomly divided into two equal groups; the first time bonding and the rebonding groups (n=30). Each group was subdivided into control, Icon and ProSeal subgroups. The enamel protective agents were applied after etching (precondi
... Show MoreBackground: Decalcification of surface enamel adjacent to fixed orthodontic appliances, in the form of white spot lesions, is a wide spread and familiar well-known side effect of orthodontic treatment. The present study was carried out to evaluate the effect of enamel protective agent (Clinpro white varnish) on shear and tensile bond strength of Dentaurum orthodontic stainless steel brackets by using 3M Unitek and Ormco as orthodontic adhesive agents. Materials and methods: Sixty-four extracted human upper first premolar teeth were selected and randomly divided into two groups with 32 teeth each, representing the shear and tensile bond strength testing groups. Then according to the type of bonding adhesive and the addition of Clinpro before
... Show MoreBackground: Lack of durability of the bond of the dental adhesive systems to tooth structure is one of the most important problems in tooth colored restorative work. This in vitro study was performed to evaluate the effect of 2% chlorhexidine gluconate(CHX) on dentin bond strength by using total etch adhesive system at twenty-four hours and three months of water storage. Material and methods:A flat dentin surface was prepared for forty sound human maxillary premolar teeth which were acid etched with 36% phosphoric acid gel after being divided randomly into four groups of ten teeth each according to storage time and CHX application, theCHX was applied for 60 seconds before adhesive application for groups I and III which were tested after twe
... Show MoreThis paper investigates the experimental response of composite reinforced concrete with GFRP and steel I-sections under limited cycles of repeated load. The practical work included testing four beams. A reference beam, two composite beams with pultruded GFRP I-sections, and a composite beam with a steel I-beam were subjected to repeated loading. The repeated loading test started by loading gradually up to a maximum of 75% of the ultimate static failure load for five loading and unloading cycles. After that, the specimens were reloaded gradually until failure. All test specimens were tested under a three-point load. Experimental results showed that the ductility index increased for the composite beams relative to the reference specim
... Show MoreThis paper investigates the experimental response of composite reinforced concrete with GFRP and steel I-sections under limited cycles of repeated load. The practical work included testing four beams. A reference beam, two composite beams with pultruded GFRP I-sections, and a composite beam with a steel I-beam were subjected to repeated loading. The repeated loading test started by loading gradually up to a maximum of 75% of the ultimate static failure load for five loading and unloading cycles. After that, the specimens were reloaded gradually until failure. All test specimens were tested under a three-point load. Experimental results showed that the ductility index increased for the composite beams relative to the refe
... Show MoreConventional concretes are almost unbending, and even a small amount of strain potential leaves them brittle. This lack of bendability is a major source of strain loss, and it has been the main goal behind the development of bendable concrete, often known with engineered ce ment composites, or ECC. This form of concrete has a lot more flexibility than regular concrete. Micromechanical polymer fibers are used to strengthen ECC. In most cases, ECC uses a 2% amount of thin, separated fibers. As a result, bendable concrete deforms but unlike traditional concrete, it does not crack. This study aims to include this kind of concrete, bendable concrete, which can be used to solve concrete problems. Karasta (CK) and Tasluja (CT) Portland Lime
... Show MoreVerbs are an important material in the construction of the sentence, as they are among the requirements of every sophisticated language, and in this regard, Ibn Al-Gothic (d. 367 AH): “Know that verbs are the origins of the buildings of most speech, and thus scholars called them buildings.” Verbs are the source of expression of the speakers’ ideas to represent the element of activity and movement, and with their knowledge We infer the meanings of Arabic words, and Ibn Al-Sarraj (d. 316 AH) defined it: “The verb denotes a meaning and a time, and that time is either past, present, or future.” Its letters are original and does not drop from its construction a letter in the conjugation of its conjugations, and it is in Arabic two type
... Show MoreThis paper presents a nonlinear finite element modeling and analysis of steel fiber reinforced concrete (SFRC) deep beams with and without openings in web subjected to two- point loading. In this study, the beams were modeled using ANSYS nonlinear finite element
software. The percentage of steel fiber was varied from 0 to 1.0%.The influence of fiber content in the concrete deep beams has been studied by measuring the deflection of the deep beams at mid- span and marking the cracking patterns, compute the failure loads for each deep beam, and also study the shearing and first principal stresses for the deep beams with and without openings and with different steel fiber ratios. The above study indicates that the location of openings an