model is derived, and the methodology is given in detail. The model is constructed depending on some measurement criteria, Akaike and Bayesian information criterion. For the new time series model, a new algorithm has been generated. The forecasting process, one and two steps ahead, is discussed in detail. Some exploratory data analysis is given in the beginning. The best model is selected based on some criteria; it is compared with some naïve models. The modified model is applied to a monthly chemical sales dataset (January 1992 to Dec 2019), where the dataset in this work has been downloaded from the United States of America census (www.census.gov). Ultimately, the forecasted sales for the next three years for chemical sales in the USA is provided.
Objective: Evaluation the national standards for exposure to chemical materials and dusts in The State
Company for Drugs Industry in Samarra.
Methodology: A descriptive evaluation design is employed through the present study from 25th May 2011
to 30th November 2011 in order to evaluate the national standards for exposure chemical materials and dusts
in The State Company for Drugs Industry in Samarra. A purposive (non-probability) sample is selected for the
study which includes (110) workers from the State Company for Drugs Industry in Samarra. Data were
gathered through the workers` interviewed according to the nature of work that they perform. The evaluation
questionnaire comprised of three parts which include the w
Dairy wastewater generally contains fats, lactose, whey proteins, and nutrients. Casein precipitation causes the effluent to decompose into a dark, strong-smelling sludge. Fluid waste contains soluble organic matter, suspended solids, and gaseous organic matter, which cause undesirable taste and smell, grant tone and turbidity, and advance eutrophication, which plays an essential role in increasing biological oxygen demand (BOD) in water. It also contains detergents and disinfecting agents from the rinses and washing processes, which increase the need for chemical oxygen (COD). One of the characteristics of dairy effluents is their relatively high temperature, high organic contents, and wide pH range, so the discharge of wastewater into
... Show MoreThe aim of this study is to construct a Mathematical model connecting the variation between the ambient temperatures and the level of consumption of kerosene in Iraq during the period (1985-1995), and use it to predict the level of this consumption during the years (2005-2015) based on the estimation of the ambient temperatures.
This paper is an attempt to help the manager of a manufactory to
plan for the next year by a scientific approach, to maximize the profit and آ provide optimal آ monthly quantities of آ production, آ inventory,
work-force, prices and sales. The computer programming helps us to execute that huge number of calculations.
<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, c
... Show MoreIn this paper we introduce a brief review about Box-Jenkins models. The acronym ARIMA stands for “autoregressive integrated moving averageâ€. It is a good method to forecast for stationary and non stationary time series. According to the data which obtained from Baghdad Water Authority, we are modelling two series, the first one about pure water consumption and the second about the number of participants. Then we determine an optimal model by depending on choosing minimum MSE as criterion.
In this study, the flavonoid and alkaloid content in the alcoholic extract of the shoots and flowers were identified in four species of the tribe Apieae / Apiacese : Ammi majus, Ammi visgana, Anethum graveolens and Foeniculum vulgaris, and the flavonoids that were detected are (Apigenin, Coumarin, Kaempferol and Quercetin). The species Foeniculum vulgaris has recorded the highest concentration of total flavonoid content (Shoots and Flowers) among the studied species, reaching 4139.2 µg / ml. The total alkaloids are estimated for these species, and the Foeniculum vulgaris has recorded the highest concentration of the total alkaloid content as well.