Hormones, their receptors, and the associated signaling pathways make compelling drug targets because of their wide-ranging biological significance to study the role of asprosin in obese male patients with diabetic mellitus type II. ELISA method was used to assay asprosin and insulin. Blood was taken with drawn sample from 30 obese normal patients with age range (40-60) years, 30 diabetic patients with age range (40-60) years at duration of disease (1-5) years and 30 normal healthy patients. The mean difference between T2DM according to insulin % (23.8±0.6) was increased than the mean of IFG (17.7±1.0) (P 0.000). The mean difference between T2DM according to asprosin (122.1±21.8) was increased than the mean of IFG (51.4±2.7) (P 0.000).the mean differences between DM2 and IFG cases in different weight groups (Ob., Ow. and Nw) according to insulin was studied, the results showed that, there were significant differences in DM and IFG obese groups (G1 and G2) according to insulin (24.18±1.13, 15.56±0.66) P (0.00), however, there were significant differences between DM and IFG in Normal weight groups (G5 and G6) according to insulin (19.98±0.93, 11.12) P (0.00), while no significant differences between DM and IFG in Over weight groups (G3 and G4) according to insulin (27.22±0.34,28.56±1.59) P (0.42).The mean differences between diabetic mellitus type 2 and impaired fasting glucose cases in different weight groups (obese, over weight and normal weight) according to Asprosin were shown in Table (3), Figure (). The results showed that, there were significant differences between DM and IFG in obese groups (G1 and G2) according to Asprosin (307.42±8.4, 66.3±2.2) P (0.00), However, there were significant differences between DM and IFG in overweight groups (G3 and G4) according to Asprosin (28.3±0.5, 51.7±3.2) P (0.00) In addition to that, there were significant differences between DM and IFG in normal weight groups (G5 and G6) according to Asprosin (30.5±1.7, 21.2±1.6)
Titanium alloy (Ti-6Al-4V or Gr.23) was widely used as a dental alloy. In the current study, polymerization of eugenol (PE) on Gr.23 titanium alloys was conducted by an electrochemical process before and after being treated by Micro Arc Oxidation (MAO). The formed films were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The corrosion behavior of Gr.23 alloy in an artificial saliva environment at a temperature range of 293–323 K has been studied and assessed by means of electrochemical polarization and impedance spectroscopy techniques. Three cases are taken into consideration; bare Gr.23, Gr.23 coated by PE, and Gr.23 coated by PE after MAO treatment. The maxi
... Show MoreIn this study, the zinc oxide NPs have been synthesized from the fresh pomegranate peels extract using the precipitation method. The ZnO nanoparticles were produced from the reaction of fresh peels extract with zinc acetate salt which was used as zinc source in the presence of 2 M NaOH. The green synthesized nanoparticles were characterized through X-ray diffraction (XRD), UV-Vis diffuse reflection spectroscopy, Fourier transform infrared spectroscopy (FTIR), and Atomic force microscopy (AFM). The XRD patterns confirm the formation of hexagonal wurtzite phase structure for ZnO synthesized using pomegranate peels extract with average crystalline size of 28 nm. FTIR spectra identify the presence of many active functional groups for the pom
... Show MoreSensibly highlighting the hidden structures of many real-world networks has attracted growing interest and triggered a vast array of techniques on what is called nowadays community detection (CD) problem. Non-deterministic metaheuristics are proved to competitively transcending the limits of the counterpart deterministic heuristics in solving community detection problem. Despite the increasing interest, most of the existing metaheuristic based community detection (MCD) algorithms reflect one traditional language. Generally, they tend to explicitly project some features of real communities into different definitions of single or multi-objective optimization functions. The design of other operators, however, remains canonical lacking any inte
... Show MoreProblem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a
... Show MoreIn this review, numerous analytical methods to distinguish pigments in tattoo, paint, and ink items are discussed. The selection of a method was dependent upon the purpose, e.g., quantification or identification of pigments. The introductory part of this review focuses on describing the importance of setting up a pigment-associated safety profile. The formation of different degradation chemical substances as well as impurity trends can be indicated through the chemical investigation of pigments in tattoo products. It is noteworthy that pigment recognition in tattoo inks can work as a preliminary method to identify the pigments in a patient's tattoo before being removed by laser therapy. Contrary to the stud
As tight gas reservoirs (TGRs) become more significant to the future of the gas industry, investigation into the best methods for the evaluation of field performance is critical. While hydraulic fractured well in TRGs are proven to be most viable options for economic recovery of gas, the interpretation of pressure transient or well test data from hydraulic fractured well in TGRs for the accurate estimation of important reservoirs and fracture properties (e.g. fracture length, fracture conductivity, skin and reservoir permeability) is rather very complex and difficult because of the existence of multiple flow profiles/regimes. The flow regimes are complex in TGRs due to the large hydraulic fractures n