Thin films of pure yttrium oxide (Y2O3) and doped with cerium oxide (CeO2) were prepared by the chemical spray pyrolysis(CSP)method. The structural, optical and electrical properties of the prepared films were investigated. The analysis of X-ray diffraction (XRD) thin films revealed that the undoped and doped Y2O3 were amorphous with a broad hump around 27o and narrow humps around 48o and 62o for all samples. Except for the Y2O3:6wt.%CeO2 thin film, all had signal preferential orientation along the (100) plane at 2θ=12.71o which belongs to CeO2, Field emission scanning electron mic
... Show MoreIn this research the electrical conductivity measurements were made on the amorphous InAs films prepared by thermal evaporation method in thickness 450 nm and annealed in different temperatures in the range (303- 573) K. The electrical conductivity (σ) showed a decreasing trend with the increasing annealing temperature, while the activation energies (Ea1, Ea2) showed an opposite trend, where the activation energies are increased with the annealing temperature.
In this paper, the effect of films thickness on the structural and optical properties of gold (Au) thin films prepared by the DC sputtering method was studied. At three different deposition times, three samples of gold thin films of three different thicknesses (200,400, and 600 nm) were prepared. X-ray diffraction patterns, scanning electron microscopy (SEM), and atomic force microscopy (AFM) images, as well as optical spectroscopy, were used to characterize thin films. The crystalline structure of gold thin films was determined by the XRD pattern which showed to be cubic phase and polycrystalline in nature. The preferred orientation was (111) at 2Ѳ equal 37.4. The effect of deposition time on the morphology of the deposited films was v
... Show MoreAlO-doped ZnO nanocrystalline thin films from with nano crystallite size in the range (19-15 nm) were fabricated by pulsed laser deposition technique. The reduction of crystallite size by increasing of doping ratio shift the bandgap to IR region the optical band gap decreases in a consistent manner, from 3.21to 2.1 eV by increasing AlO doping ratio from 0 to 7wt% but then returns to grow up to 3.21 eV by a further increase the doping ratio. The bandgap increment obtained for 9% AlO dopant concentration can be clarified in terms of the Burstein–Moss effect whereas the aluminum donor atom increased the carrier's concentration which in turn shifts the Fermi level and widened the bandgap (blue-shift). The engineering of the bandgap by low
... Show MoreIn this paper, preliminary test Shrinkage estimator have been considered for estimating the shape parameter α of pareto distribution when the scale parameter equal to the smallest loss and when a prior estimate α0 of α is available as initial value from the past experiences or from quaintance cases. The proposed estimator is shown to have a smaller mean squared error in a region around α0 when comparison with usual and existing estimators.