An aqueous chemical reaction has been used to prepare antifungal ZnS: Mn nanostructures, from manganese chloride, zinc acetate and thioacetamide in aqueous solution. The nanoparticle size has been controlled using thioglycolic acid as a capping factor. The major feature of the ZnS:Mn nanoparticles of average diameter ~ 2.73 nm is that possible preparing the sample from sources non-toxic precursors. The manufactured ZnS:Mn nanoparticles were identified and characterized to investigate the structure, morphology, composition of components of the nanoparticles and optical properties using (XRD, SEM, EDS and UV-Vis spectroscopy) techniques respectively. The agar dilution mechanism used to evaluate of the antifungal activity using ZnS:Mn nanoparticles which showed an efficient antifungal activity against four fungal models Aspergillus fumigatus ,Aspergillus falvus, Trichophyton mentagrophyte, and Microsporum audonii the inhibition increase with the increase of nanoparticle concentration. The antifungal property of manganese doped zinc sulphide nanoparticles creates from the interaction between nanoparticles and water led to generation the interactive oxygen species. Perturbation of the cell membranes due to the existence of Zn ions and S affecting on inhibition rate . the study aimed to evaluation the Antifungal Activity of ZnS:Mn Nanoparticles Against Some Isolated Pathogenic Fungi.
The bacterial contamination of lipsticks and face cream may become a great important matter in the medical laboratories. The present study was designed to determine the types of bacterial contamination in the face cream and lipsticks of undergraduate students. Also, the study aimed to determine the sensitivity of the isolated bacteria against many antibacterial agents. The study included 190 swabs samples from 190 face cream and lipsticks samples of the females’ students from five departments in the Medical Technology Institute, Almansour, Middle Technical University were collected in February 2018. The swab samples were collected with sterile condition and cultured on enriched Blood agar and MacConkey agar. Serial dilutions were made up
... Show MorePotential health and environmental effects of nanoparticles need to be thoroughly assessed before their widespread commercialization. The present investigation was planned with the aims to determine the effects of gold nanoparticles (GNPs) on blast (BI) and mitotic (MI) indices of cultured lymphocytes. The results revealed that BI (50.3±2.3, 30.2±1.9, 10.5±0.7 and 0.0%, respectively) and MI (70.1±2.9, 20.4±1.1, 5.3±0.1 and 0.0%, respectively) showed a gradual decreased percentage as the concentration of GNPs was increased from 0.085 to 0.66 µg/mL, and the difference was significant compared to control culture (81.6±2.5 and 90.2±3.7%, respectively). A maximum inhibition of BI and MI was occurred at the concentration 0.66 µg/mL. In
... Show MoreInfluence of metal nanoparticles synthesized by microorganisms upon soil-borne microscopic fungus Aspergillus terreus K-8 was studied. It was established that the metal nanoparticles synthesized by microorganisms affect the enzymatic activity of the studied culture. Silver nanoparticles lead to a decrease in cellulase activity and completely suppress the amylase activity of the fungus, while copper nanoparticles completely inhibit the activity of both the cellulase complex and amylase. The obtained results imply that the large-scale use of silver and copper nanoparticles may disrupt biological processes in the soil and cause change in the physiological and biochemical state of soil-borne microorganisms as well.
Background: Toxin-producing Shiga Escherichia coli has been identified as a new foodborne pathogen that poses a significant health risk to humans. Shiga toxin-producing Escherichia coli can be found in raw cow milk and its derivatives. A small number of Escherichia coli strains that produce shiga toxin are pathogenic. Aim of study: The study aimed to see if there were any virulence genes in 50 milk samples that were typical of Entero-haemorrhagic E. coli and evaluate the Myrtus communis effects on these bacteria. Materials and Method: Milk samples were used to isolate E. coli bacteria (n= 27), biochemically analyzed, and genetically screened for virulence genes using a multiplex (PCR). The hydro-alcoholic extraction of Myrtus communis leave
... Show MoreThe eggshell cuticle is the proteinaceous outermost layer of the eggshell which regulates water exchange and protects against entry of micro-organisms. Outer eggshell and cuticle protein was extracted from domestic chicken. The aim of the research is to find out the effect of the treated and untreated nano particles of egg shells with micro wave cold plasma on the effectiveness of E. coli (negative bacteria) that infect the skin and measure the diameter of bacterial inhibition zone, the eggshell has been prepared by a chemical method (sol gel) and measure the level of acidity and the PH is neutral. The result of Atomic Force Microscope (AFM) shows that the particles diameters become smaller with nano-particles solution than for egg
... Show MoreAntimicrobial resistance is one of the most significant threats to public health worldwide. As opposed to using traditional antibiotics, which are effective against diseases that are multidrug-resistant, it is vital to concentrate on the most innovative antibacterial compounds. These innate bacterial arsenals under the term «bacteriocins» refer to low-molecularweight, heat-stable, membrane-active, proteolytically degradable, and pore-forming cationic peptides. Due to their ability to attack bacteria, viruses, fungi, and biofilm, bacteriocins appear to be the most promising, currently accessible alternative for addressing the antimicrobial resistance (AMR) problem and minimizing the negative effects of antibiotics on the host’s m
... Show MoreThis investigation was carried out to estimate the antiparasitic potential of chitosan nanoparticles loaded with paromomycin against
The development of new cephalosporins with improved activity against resistant microbes, such as, MRSA (methicillin resistant Staph. aureus), P. aeruginosa, is of high potential. Chemical synthesis of two new series of thiadiazole linked to cysteine (series 1) and cephalosporins containing thiadiazole linked to cysteine through disulfide bond (series 2) were achieved. The chemical structures of the synthesized compounds were confirmed using spectral (FT-IR, 1H-NMR) and elemental microanalysis. The incorporation of privileged chemical moieties, such as, thiadiazole, Schiff base, cysteine and sulfonamide, has been found to have great contribution to the antimicrobial activities. Compounds of series 1 (1
... Show MoreThis study examined the effect of essential oils extracted from peel of Citrus paradisi and Citrus sinensis on two species of fungi: Penicillium oxalicum and Fusarium oxysporum as well as effect of two fungicides: Carbendazim and Thiophanatemethyl against above fungi. Results showed that the essential oil of Citrus paradisi inhibited the radial growth of Penicillium oxalicum and Fusarium oxysporum at concentration 4%. Nevertheless, the essential oil of Citrus sinensis inhibited the radial growth at concentration 5 and 4%, respectively. Furthermore, the two studied fungicides inhibited radial growth of these fungi too. Therefore, there are a positive relationship between the evaluating of concentration and the percentage of inhibiting of rad
... Show More