The reducing of erosion and the solubility of irrigation canals soils which constructed on gypsum soil is important in civil and water resources engineering. The main problem of gypsum soils is the presence of gypsum which represents one of most complex engineering problems, especially when accompanied by the moving of water which represent dynamic load along the canal. There are several solutions to this problem, in this research “Poly urethane” is used to give the gypsum soil sufficient hardness to reduce the solubility and erosion, after compacting the soil in the canal, percentages of Poly urethane was used to making cover to the soil by mixing percent of soil with Poly urethane, and the ratio was as follows: (5 and 10) % and the percent of Poly urethane were as follows: 6%, 10%, and 12%. The collapsibility of the soil was calculated by measuring the height of the soil after the passage of water along the canal. This collapsibility was used as an index to calculate the erosion and the solubility of gypsum within the soil. The results show that the best percentage of poly urethane is (10%), which gave small value in corrosion about (3%) at 28 days.
Experiments research is done to determine how saturated stiff clayey soil responds to a single impulsive load. Models made of saturated, stiff clay were investigated. To supply the single pulse energy, various falling weights from various heights were tested using the falling weight deflectometer (FWD). Dynamic effects can range from the major failure of a sensitive sensor or system to the apparent destruction of structures. This study examines the response of saturated stiff clay soil to a single impulsive load (vertical displacement at the soil surface below and beside the bearing plates). Such reactions consist of displacements, velocities, and accelerations caused by the impact occurring at the surface depth induced by the impact loads
... Show MoreThe primary components of successful engineering projects are time, cost, and quality. The use of the ring footing ensures the presence of these elements. This investigation aims to find the optimum number of geogrid reinforcement layers under ring footing subjected to inclined loading. For this purpose, experimental models were used. The parameters were studied to find the optimum geogrid layers number, including the optimum geogrid layers spacing and the optimum geogrid layers number. The optimum geogrid layers spacing value is 0.5B. And as the load inclination angle increased, the tilting and the tilting improvement percent for the load inclination angles (5°,10°,15°) are (40%,28%, and 5%) respectively. The reduction percent o
... Show MoreThe primary components of successful engineering projects are time, cost, and quality. The use of the ring footing ensures the presence of these elements. This investigation aims to find the optimum number of geogrid reinforcement layers under ring footing subjected to inclined loading. For this purpose, experimental models were used. The parameters were studied to find the optimum geogrid layers number, including the optimum geogrid layers spacing and the optimum geogrid layers number. The optimum geogrid layers spacing value is 0.5B. And as the load inclination angle increased, the tilting and the tilting improvement percent for the load inclination angles (5°,10°,15°) are (40%,28%, and 5%) respectively. The reduction percent of the
... Show MoreIn this study, concentrations of radon were measured for seventeen samples of soil distributed in three Sulphuric Spring, in addition to other regions as a background in Hit City in AL-Anbar Governorate. The radon concentrations in soil samples measured by using alpha-emitters registration that emits from radon (222Rn) in (CR-39) track detector. The concentrations values were calculated by a comparison with standard samples. The results show that the radon concentrations in first spring varies from (258.253- 347.762 Bq/m3), second spring (230.374-305.209 Bq/m3), third spring (292.002-336.023 Bq/m3) and the average radon concentration in other regions (187.821 Bq/m3). As a conclusion of the study radon concentration in Sulphuric Spring is r
... Show MoreGrowth of Penicillium expansum, an ubiquitous mould found in stored fruit globallyt, was significantly restricted by exposure to 48 h cell-free supernatant of two strains of Lactobacillus plantarum (p < 0.001). In addition, the biotransformation of patulin, a toxic secondary metabolite formed by P. expansum, on exposure to L. plantarum cells and cell-free supernatant highlights the potential of this GRAS microbe as a biocontrol agent. Up to 80% of patulin was biotransformed following a 4 h incubation with 1010 cells ml−1 (37 °C) forming E- and Z-ascladiol. The formation of these products was more pronounced at elevated pH and cell density. Exposure to cell free supernatant or sonicated cells resulted in complete patulin biotransformation
... Show More???? ?? ??? ????? ???? ?????? ?????????? ????? ??????? ???? ?????? ????? ??? ??? ????? ?? ???? ??? ????? ????? ???? ????? ????? ?? 0-3cm, 10cm, 20cm, 30cm, 40cm ???????? ????? ?? ???? ????? ???????? ?? ???? ????? ?????? CR-39??????? ?? ??? ??? ?????????? ???????????? ???????? ???? n.cm-2.s-1 5 x 103?? ?????? ?????????? Am241- Be??? ???? ??????? ????????? ??? ?? ???? ????? ?????????? ??? ?? ????? ??????? ?????? 0.881±0.086??? ?? ??????? ????? ??? ????? ??? ?? ????? ????? ??? ???????? ???0.441±0.036 ??? ?? ???????
Eight soil samples were selected around Najaf governorate at depth levels 40-50 cm. X-Ray Fluorescence (XRF) was used to determine the concentrations of major and trace elements. Liner and mass attenuation coefï¬cient (µ, µÏ) have been determined at gamma energies (662, 1172,1332) keV using NaI (Tl) detector. The range of linear attenuation coefficients for calculated samples were (0.553-1.163) cm-1, (0.122-0.178) cm-1 and (0.049-0.105) cm-1 at (662, 1172,1332) keV respectively. The range of mass attenuation coefficients obtained (0.39-0.76) cm2/gm, (0.087-0.117) cm2/gm and (0.0336-0.074) cm2/gm at (662, 1172,1332) keV respectively. The result
... Show MoreThe rapid change in economic is a serious challenge facing all countries around the world, even developed ones. This challenge is increasing as the world enters the age of knowledge in which different knowledge and technologies have emerged and the distance between the emergence of scientific knowledge and its actual application on the ground has been reduced as well as the growing role of science and technology in community development. One of the most important technology amongst these technologies is nanotechnology, where this technology plays a major role in the development of products and modern devices and reduces cost with quality improvement. This technology is cross-cultural, requires a comprehensive knowledge structure and depe
... Show More