The reducing of erosion and the solubility of irrigation canals soils which constructed on gypsum soil is important in civil and water resources engineering. The main problem of gypsum soils is the presence of gypsum which represents one of most complex engineering problems, especially when accompanied by the moving of water which represent dynamic load along the canal. There are several solutions to this problem, in this research “Poly urethane” is used to give the gypsum soil sufficient hardness to reduce the solubility and erosion, after compacting the soil in the canal, percentages of Poly urethane was used to making cover to the soil by mixing percent of soil with Poly urethane, and the ratio was as follows: (5 and 10) % and the percent of Poly urethane were as follows: 6%, 10%, and 12%. The collapsibility of the soil was calculated by measuring the height of the soil after the passage of water along the canal. This collapsibility was used as an index to calculate the erosion and the solubility of gypsum within the soil. The results show that the best percentage of poly urethane is (10%), which gave small value in corrosion about (3%) at 28 days.
Background: presence of lingual vascular foramina and canals in the interforaminal region may increase the risk ofsurgical complications during implant placement or any surgical procedure in this area. Aim of this study is the radiological evaluation of the anatomic characteristic of the lingual foramina and their vascular canals in the anterior of the mandible using cone beam computed tomography. Materials and Methods: Prospective study including 72 Iraqi subjects (31 male and 41 female) ranging from 20 to 59 years, all subjects attended Al-Sharaa dental clinic in AL-Najaf AL-Ashraf city, scanned with CBCT from September 2016 to February 2017. Using 3dimentional and sagittal cross section to detect lingual foramina and their vascular canal
... Show MoreIraqi agriculture faces a major water problem, affecting cultivated areas, agricultural production, farmers’ incomes and food security. However, the results achieved in rationalizing the use of irrigation water are still limited and do not match what they should be in order to meet this serious challenge. The study aimed to provide a vision for the development of the effectiveness of the dissemination of innovations to rationalize the use of irrigation water in Iraqi agriculture. In light of the framework of the dissemination of agricultural innovations, factors related to their effectiveness, and the summary of the Iraqi experience in the field of dissemination of modern irrigation
Abstract
Electrical magnate was designed and constructed, the optimum Magnetic flux and the effect of time on the physical properties of the alkaline (magnetic water) produced from the bottled drinking water [the total dissolved solids (TDS) or the electrical conductivity, and pH] were studied, to simulate ZamZam water in Mekka Saudi Arabia. Also, the efficiency of magnetic field from this designed electrical magnate in decreasing the TDS of sea water (of 1500 ppm NaCl Content), to convert it to water suitable for irrigation (TDS<1000 ppm) was investigated in this work.The results show that the magnetic flux from our designed electrical magnate in the range of (0.013- 0.08) Tesla and 30 minut
... Show MoreThe research aims to identify the possibility of applying environmental fines to commercial shops and restaurants to reduce the environmental pollution represented by the wastes generated from them. The research sample was divided into two groups, including the first (20) commercial shops (meat shops and slaughter it, fruits & vegetables, legumes and accessories) and second (30) Restaurant in the city of Baghdad on both sides of Karkh and Rusafa. The quality of the waste was classified into carton, plastic, aluminum, glass, paper, cork and food waste. The study revealed the possibility of applying environmental fines to restaurants and shops to reduce the waste generated from them throughout the year and to apply continuous monitorin
... Show MoreA field experiment was conducted in Yusufiya sub-district - Mahmudiya township/Baghdad governorate in silty loam texture soil during the spring season of 2020. The experiment included three treatments with three replicates, as the Randomized Complete Block Design (RCBD) was used according to the arrangement of the split design block. The treatments are in the irrigation system, which included surface drip irrigation (T1) and sprinkler irrigation (T2). Secondly, the Irrigation levels including the irrigation using 0.70 Pan Evaporation Fraction PEF (I1), irrigation using 1.00 PEF (I2), and irrigation using 1.30 PEF (I3). Coupled with, Pota
... Show MoreThe alluvial fan of Mandali located between latitude 30˚45’00” N longitude 45˚30’00” E in east of Diyala Governorate, Iraq. Thirty-five wells were identified in the study area with average depth of 84 m and estimated area of 21550 ha. A three-dimensional conceptual model was prepared by using GMS program. From wells cross sections, four geological layers have been identified. The hydraulic conductivity of these layers was calculated for steady state condition, where the water levels for nine wells distributed over the study area were observed at same time. Afterward, PEST facility in the GMS was used to estimate the aquifer hydraulic characteristics. Other characteristics such as storage coefficient and specific yield have
... Show MoreThis study was focused on biotreatment of soil which polluted by petroleum compounds (Diesel) which caused serious environmental problems. One of the most effective and promising ways to treat diesel-contaminated soil is bioremediation. It is a choice that offers the potential to destroy harmful pollutants using biological activity. The capability of mixed bacterial culture was examined to remediate the diesel-contaminated soil in bio piling system. For fast ex-situ treatment of diesel-contaminated soils, the bio pile system was selected. Two pilot scale bio piles (25 kg soil each) were constructed containing soils contaminated with approximately 2140 mg/kg total petroleum hydrocarbons (TPHs). The amended soil: (contaminated soil with the a
... Show MoreThis study was focused on biotreatment of soil which polluted by petroleum compounds (Diesel) which caused serious environmental problems. One of the most effective and promising ways to treat diesel-contaminated soil is bioremediation. It is a choice that offers the potential to destroy harmful pollutants using biological activity. The capability of mixed bacterial culture was examined to remediate the diesel-contaminated soil in bio piling system. For fast ex-situ treatment of diesel-contaminated soils, the bio pile system was selected. Two pilot scale bio piles (25 kg soil each) were constructed containing soils contaminated with approximately 2140 mg/kg total petroleum hydrocarbons (TPHs). The amended soil:
... Show MoreSoil pH is one of the main factors to consider before undertaking any agricultural operation. Methods for measuring soil pH vary, but all traditional methods require time, effort, and expertise. This study aimed to determine, predict, and map the spatial distribution of soil pH based on data taken from 50 sites using the Kriging geostatistical tool in ArcGIS as a first step. In the second step, the Support Vector Machines (SVM) machine learning algorithm was used to predict the soil pH based on the CIE-L*a*b values taken from the optical fiber sensor. The standard deviation of the soil pH values was 0.42, which indicates a more reliable measurement and the data distribution is normal.