Image pattern classification is considered a significant step for image and video processing. Although various image pattern algorithms have been proposed so far that achieved adequate classification, achieving higher accuracy while reducing the computation time remains challenging to date. A robust image pattern classification method is essential to obtain the desired accuracy. This method can be accurately classify image blocks into plain, edge, and texture (PET) using an efficient feature extraction mechanism. Moreover, to date, most of the existing studies are focused on evaluating their methods based on specific orthogonal moments, which limits the understanding of their potential application to various Discrete Orthogonal Moments (DOMs). Therefore, finding a fast PET classification method that accurately classify image pattern is crucial. To this end, this paper proposes a new scheme for accurate and fast image pattern classification using an efficient DOM. To reduce the computational complexity of feature extraction, an election mechanism is proposed to reduce the number of processed block patterns. In addition, support vector machine is used to classify the extracted features for different block patterns. The proposed scheme is evaluated by comparing the accuracy of the proposed method with the accuracy achieved by state-of-the-art methods. In addition, we compare the performance of the proposed method based on different DOMs to get the robust one. The results show that the proposed method achieves the highest classification accuracy compared with the existing methods in all the scenarios considered.
With the proliferation of both Internet access and data traffic, recent breaches have brought into sharp focus the need for Network Intrusion Detection Systems (NIDS) to protect networks from more complex cyberattacks. To differentiate between normal network processes and possible attacks, Intrusion Detection Systems (IDS) often employ pattern recognition and data mining techniques. Network and host system intrusions, assaults, and policy violations can be automatically detected and classified by an Intrusion Detection System (IDS). Using Python Scikit-Learn the results of this study show that Machine Learning (ML) techniques like Decision Tree (DT), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) can enhance the effectiveness of an Intrusi
... Show MoreThis paper presents a new and effective procedure to extract shadow regions of high- resolution color images. The method applies this process on modulation the equations of the band space a component of the C1-C2-C3 which represent RGB color, to discrimination the region of shadow, by using the detection equations in two ways, the first by applying Laplace filter, the second by using a Kernel Laplace filter, as well as make comparing the two results for these ways with each other's. The proposed method has been successfully tested on many images Google Earth Ikonos and Quickbird images acquired under different lighting conditions and covering both urban, roads. Experimental results show that this algorithm which is simple and effective t
... Show MoreThis paper present a simple and sensitive method for the determination of DL-Histidine using FIA-Chemiluminometric measurement resulted from oxidation of luminol molecule by hydrogen peroxide in alkaline medium in the presence of DL-Histidine. Using 70?l. sample linear plot with a coefficient of determination 95.79% for (5-60) mmol.L-1 while for a quadratic relation C.O.D = 96.44% for (5-80) mmol.L-1 and found that guadratic plot in more representative. Limit of detection was 31.93 ?g DL-Histidine (S/N = 3), repeatability of measurement was less that 5% (n=6). Positive and negative ion interferances was removed by using minicolume containing ion exchange resin located after injection valve position.
Modern civilization increasingly relies on sustainable and eco-friendly data centers as the core hubs of intelligent computing. However, these data centers, while vital, also face heightened vulnerability to hacking due to their role as the convergence points of numerous network connection nodes. Recognizing and addressing this vulnerability, particularly within the confines of green data centers, is a pressing concern. This paper proposes a novel approach to mitigate this threat by leveraging swarm intelligence techniques to detect prospective and hidden compromised devices within the data center environment. The core objective is to ensure sustainable intelligent computing through a colony strategy. The research primarily focusses on the
... Show MoreSoftware-defined networking (SDN) is an innovative network paradigm, offering substantial control of network operation through a network’s architecture. SDN is an ideal platform for implementing projects involving distributed applications, security solutions, and decentralized network administration in a multitenant data center environment due to its programmability. As its usage rapidly expands, network security threats are becoming more frequent, leading SDN security to be of significant concern. Machine-learning (ML) techniques for intrusion detection of DDoS attacks in SDN networks utilize standard datasets and fail to cover all classification aspects, resulting in under-coverage of attack diversity. This paper proposes a hybr
... Show More: The Aluminium (Al) material emerged as a plasmonic material in the wavelength ranges from the ultraviolet to the visible bands in different on-chip plasmonic applications. In this paper, we demonstrate the effect of using Al on the electromagnetic (EM) field distribution of a compact hybrid plasmonic waveguide (HPW) acting as a polarization rotator. We compare the performance of Al with other familiar metals that are widely used as plasmonic materials, which are Silver (Ag) and Gold (Au). Furthermore, we study the effect of reducing the geometrical dimensions of the used materials on the EM field distributions inside the HPW and, consequently, on the efficiency of the polarization rotation. We perform the study based o
... Show MoreIncremental Sheet Metal Forming (ISMF) is a modern sheet metal forming technology which offers the possibility of manufacturing 3D complex parts of thin sheet metals using the CNC milling machine. The surface quality is a very important aspect in any manufacturing process. Therefore, this study focuses on the resultant residual stresses by forming parameters, namely; (tool shape, step over, feed rate, and slope angle) using Taguchi method for the products formed by single point incremental forming process (SPIF). For evaluating the surface quality, practical experiments to produce pyramid like shape have been implemented on aluminum sheets (AA1050) for thickness (0.9) mm. Three types of tool shape used in this work, the spherical tool ga
... Show MoreThe research aims mainly to the role of the statement style costs on the basis of activity based on performance (PFABC) to reduce production cost and improve the competitive advantage of economic units and industrial under the modern business environment dominated by a lot of developments and changes rapidly, which necessitates taking them and criticize them to ensure survival and continuity. The research problem is the inability of traditional cost methods of providing useful information to the departments of units to take many administrative decisions, particularly decisions related to the product and calculating the costs of the quality of the sound and the availability of the need and the ability to replace methods capa
... Show More