Image pattern classification is considered a significant step for image and video processing. Although various image pattern algorithms have been proposed so far that achieved adequate classification, achieving higher accuracy while reducing the computation time remains challenging to date. A robust image pattern classification method is essential to obtain the desired accuracy. This method can be accurately classify image blocks into plain, edge, and texture (PET) using an efficient feature extraction mechanism. Moreover, to date, most of the existing studies are focused on evaluating their methods based on specific orthogonal moments, which limits the understanding of their potential application to various Discrete Orthogonal Moments (DOMs). Therefore, finding a fast PET classification method that accurately classify image pattern is crucial. To this end, this paper proposes a new scheme for accurate and fast image pattern classification using an efficient DOM. To reduce the computational complexity of feature extraction, an election mechanism is proposed to reduce the number of processed block patterns. In addition, support vector machine is used to classify the extracted features for different block patterns. The proposed scheme is evaluated by comparing the accuracy of the proposed method with the accuracy achieved by state-of-the-art methods. In addition, we compare the performance of the proposed method based on different DOMs to get the robust one. The results show that the proposed method achieves the highest classification accuracy compared with the existing methods in all the scenarios considered.
The aim of the research is to investigate the effect of cold plasma on the bacteria grown on texture of sesame paste in its normal particle and nano particle size. Starting by using the image segmentation process depending on the threshold method, it is used to get rid of the reflection of the glass slides on which the sesame samples are placed. The classification process implemented to separate the sesame paste texture from normal and abnormal texture. The abnormal texture appears when the bacteria has been grown on the sesame paste after being left for two days in the air, unsupervised k-mean classification process used to classify the infected region, the normal region and the treated region. The bacteria treated with cold plasma, t
... Show MoreShadow removal is crucial for robot and machine vision as the accuracy of object detection is greatly influenced by the uncertainty and ambiguity of the visual scene. In this paper, we introduce a new algorithm for shadow detection and removal based on different shapes, orientations, and spatial extents of Gaussian equations. Here, the contrast information of the visual scene is utilized for shadow detection and removal through five consecutive processing stages. In the first stage, contrast filtering is performed to obtain the contrast information of the image. The second stage involves a normalization process that suppresses noise and generates a balanced intensity at a specific position compared to the neighboring intensit
... Show MoreThis research tries to reveal how to manage and control the competitive edge for business by building managerial skills in various organizational levels. Our research aims at finding out the nature of various technical, human and in tellectual skills of a new president whose superiority is his competitive ness in the application field at general company for construe tioual industriesand testing the surveyed minor and major changes through a questionnaire to collect information from officials. The sample was composed of (45) director. The data was analyzed using some methods and statistical programs. The most prominent of these is (SPSS) that was used to extract the arithmetic mean, standard deviation, correlation coefficient
... Show MoreAnalysis system of sports players is very important for individuals in weightlifting. Assessment of player and strength is important for the performance of weightlifting. This paper proposes an analytical method for weightlifters with check-by-frame video. This analysis system can compute the major steps of seven positions in both snatch and clean and jerk methods in frame-video weightlifting monitoring of movements. Each user can compute the major steps of the seven positions of Hu moments among two frames in the video during training, and the Euclidian distance can be computed for the Hu moment values and lifting moment values in the snatch and clean and jerk methods during training. The outcome of the proposed system shows on efficien
... Show MoreMetal-organic frameworks (MOFs) are a relatively new class of materials of unique porous structures and exceptional properties. Currently, more than 110,000 types of MOFs have been reported among the countless possibilities. In this study, we have synthesised a novel MOF using zirconium chloride as the metal source and 4,4'-dicarboxy-2,2'-biquinoline (bicinchoninic acid disodium salt) as the linker, which reacted in N,N-Dimethylformamide (DMF) solvent. Three preparation methods were employed to prepare five types of the MOF, and they were compared to optimize the synthesis conditions. The resulting MOFs, named Zr-BADS, were characterised using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), microscopy, and
... Show MoreRecently, the increasing demand to transfer data through the Internet has pushed the Internet infrastructure to the nal edge of the ability of these networks. This high demand causes a deciency of rapid response to emergencies and disasters to control or reduce the devastating effects of these disasters. As one of the main cornerstones to address the data trafc forwarding issue, the Internet networks need to impose the highest priority on the special networks: Security, Health, and Emergency (SHE) data trafc. These networks work in closed and private domains to serve a group of users for specic tasks. Our novel proposed network ow priority management based on ML and SDN fullls high control to give the required ow priority to SHE dat
... Show MoreBored piles settlement behavior under vertical loaded is the main factor that affects the design requirements of single or group of piles in soft soils. The estimation of bored pile settlement is a complicated problem because it depends upon many factors which may include ground conditions, validation of bored pile design method through testing and validation of theoretical or numerical prediction of the settlement value. In this study, a prototype single and bored pile group model of arrangement (1*1, 1*2 and 2*2) for total length to diameter ratios (L/D) is 13.33 and clear spacing three times of diameter, subjected to vertical axial loads. The bored piles model used for the test was 2000
... Show MoreAbstract Rasha Hameid Jehad Baghdad University Background: The high reactivity of hydrogen peroxide used in bleaching agents have raised important questions on their potential adverse effects on physical properties of restorative materials. The purpose of this in vitro study was to evaluate the effect of in-office bleaching agents on the microhardness of a new Silorane-based restorative material in comparison to methacrylate-based restorative material. Materials and method: Forty specimens of Filtek™ P90 (3M ESPE,USA) and Filtek™ Supreme XT (3M ESPE, USA) of (8mm diameter and 3m height) were prepared. All specimens were polished with Sof-Lex disks (3M ESPE, USA). All samples were rinsed and stored in incubator 37˚C for 24 ho
... Show MoreIn this article, Convolution Neural Network (CNN) is used to detect damage and no damage images form satellite imagery using different classifiers. These classifiers are well-known models that are used with CNN to detect and classify images using a specific dataset. The dataset used belongs to the Huston hurricane that caused several damages in the nearby areas. In addition, a transfer learning property is used to store the knowledge (weights) and reuse it in the next task. Moreover, each applied classifier is used to detect the images from the dataset after it is split into training, testing and validation. Keras library is used to apply the CNN algorithm with each selected classifier to detect the images. Furthermore, the performa
... Show More