Image pattern classification is considered a significant step for image and video processing. Although various image pattern algorithms have been proposed so far that achieved adequate classification, achieving higher accuracy while reducing the computation time remains challenging to date. A robust image pattern classification method is essential to obtain the desired accuracy. This method can be accurately classify image blocks into plain, edge, and texture (PET) using an efficient feature extraction mechanism. Moreover, to date, most of the existing studies are focused on evaluating their methods based on specific orthogonal moments, which limits the understanding of their potential application to various Discrete Orthogonal Moments (DOMs). Therefore, finding a fast PET classification method that accurately classify image pattern is crucial. To this end, this paper proposes a new scheme for accurate and fast image pattern classification using an efficient DOM. To reduce the computational complexity of feature extraction, an election mechanism is proposed to reduce the number of processed block patterns. In addition, support vector machine is used to classify the extracted features for different block patterns. The proposed scheme is evaluated by comparing the accuracy of the proposed method with the accuracy achieved by state-of-the-art methods. In addition, we compare the performance of the proposed method based on different DOMs to get the robust one. The results show that the proposed method achieves the highest classification accuracy compared with the existing methods in all the scenarios considered.
This study depicts the removal of Manganese ions (Mn2+) from simulated wastewater by combined electrocoagulation/ electroflotation technologies. The effects of initial Mn concentration, current density (C.D.), electrolysis time, and different mesh numbers of stainless steel screen electrodes were investigated in a batch cell by adopting Taguchi experimental design to explore the optimum conditions for maximum removal efficiency of Mn. The results of multiple regression and signal to noise ratio (S/N) showed that the optimum conditions were Mn initial concentration of 100 ppm, C.D. of 4 mA/cm2, time of 120 min, and mesh no. of 30 (wire/inch). Also, the relative significance of each factor was attained by the analysis
... Show MoreThis study depicts the removal of Manganese ions (Mn2+) from simulated wastewater by combined electrocoagulation/ electroflotation technologies. The effects of initial Mn concentration, current density (C.D.), electrolysis time, and different mesh numbers of stainless steel screen electrodes were investigated in a batch cell by adopting Taguchi experimental design to explore the optimum conditions for maximum removal efficiency of Mn. The results of multiple regression and signal to noise ratio (S/N) showed that the optimum conditions were Mn initial concentration of 100 ppm, C.D. of 4 mA/cm2, time of 120 min, and mesh no. of 30 (wire/inch). Also, the relative significance of each factor was attained by the analysis of variance (ANO
... Show MoreThe research aimed to identify “The impact of an instructional-learning design based on the brain- compatible model in systemic thinking among first intermediate grade female students in Mathematics”, in the day schools of the second Karkh Educational directorate.In order to achieve the research objective, the following null hypothesis was formulated:There is no statistically significant difference at the significance level (0.05) among the average scores of the experimental group students who will be taught by applying an (instructional- learning) design based to on the brain–compatible model and the average scores of the control group students who will be taught through the traditional method in the systemic thinking test.The resear
... Show MoreThis study investigates the impact of spatial resolution enhancement on supervised classification accuracy using Landsat 9 satellite imagery, achieved through pan-sharpening techniques leveraging Sentinel-2 data. Various methods were employed to synthesize a panchromatic (PAN) band from Sentinel-2 data, including dimension reduction algorithms and weighted averages based on correlation coefficients and standard deviation. Three pan-sharpening algorithms (Gram-Schmidt, Principal Components Analysis, Nearest Neighbour Diffusion) were employed, and their efficacy was assessed using seven fidelity criteria. Classification tasks were performed utilizing Support Vector Machine and Maximum Likelihood algorithms. Results reveal that specifi
... Show MoreAs a result of recent developments in highway research as well as the increased use of vehicles, there has been a significant interest paid to the most current, effective, and precise Intelligent Transportation System (ITS). In the field of computer vision or digital image processing, the identification of specific objects in an image plays a crucial role in the creation of a comprehensive image. There is a challenge associated with Vehicle License Plate Recognition (VLPR) because of the variation in viewpoints, multiple formats, and non-uniform lighting conditions at the time of acquisition of the image, shape, and color, in addition, the difficulties like poor image resolution, blurry image, poor lighting, and low contrast, these
... Show MoreTremendous efforts have been exerted to understand first language acquisition to facilitate second language learning. The problem lies in the difficulty of mastering English language and adapting a theory that helps in overcoming the difficulties facing students. This study aims to apply Thomasello's theory of language mastery through usage. It assumes that adults can learn faster than children and can learn the language separately, and far from academic education. Tomasello (2003) studied the stages of language acquisition for children, and developed his theory accordingly. Some studies, such as: (Ghalebi and Sadighi, 2015, Arvidsson, 2019; Munoz, 2019; Verspoor and Hong, 2013) used this theory when examining language acquisition. Thus,
... Show MoreSemantic segmentation realization and understanding is a stringent task not just for computer vision but also in the researches of the sciences of earth, semantic segmentation decompose compound architectures in one elements, the most mutual object in a civil outside or inside senses must classified then reinforced with information meaning of all object, it’s a method for labeling and clustering point cloud automatically. Three dimensions natural scenes classification need a point cloud dataset to representation data format as input, many challenge appeared with working of 3d data like: little number, resolution and accurate of three Dimensional dataset . Deep learning now is the po
Patients infected with the COVID-19 virus develop severe pneumonia, which typically results in death. Radiological data show that the disease involves interstitial lung involvement, lung opacities, bilateral ground-glass opacities, and patchy opacities. This study aimed to improve COVID-19 diagnosis via radiological chest X-ray (CXR) image analysis, making a substantial contribution to the development of a mobile application that efficiently identifies COVID-19, saving medical professionals time and resources. It also allows for timely preventative interventions by using more than 18000 CXR lung images and the MobileNetV2 convolutional neural network (CNN) architecture. The MobileNetV2 deep-learning model performances were evaluated
... Show More