Image pattern classification is considered a significant step for image and video processing. Although various image pattern algorithms have been proposed so far that achieved adequate classification, achieving higher accuracy while reducing the computation time remains challenging to date. A robust image pattern classification method is essential to obtain the desired accuracy. This method can be accurately classify image blocks into plain, edge, and texture (PET) using an efficient feature extraction mechanism. Moreover, to date, most of the existing studies are focused on evaluating their methods based on specific orthogonal moments, which limits the understanding of their potential application to various Discrete Orthogonal Moments (DOMs). Therefore, finding a fast PET classification method that accurately classify image pattern is crucial. To this end, this paper proposes a new scheme for accurate and fast image pattern classification using an efficient DOM. To reduce the computational complexity of feature extraction, an election mechanism is proposed to reduce the number of processed block patterns. In addition, support vector machine is used to classify the extracted features for different block patterns. The proposed scheme is evaluated by comparing the accuracy of the proposed method with the accuracy achieved by state-of-the-art methods. In addition, we compare the performance of the proposed method based on different DOMs to get the robust one. The results show that the proposed method achieves the highest classification accuracy compared with the existing methods in all the scenarios considered.
نتيجة للتطورات الأخيرة في أبحاث الطرق السريعة بالإضافة إلى زيادة استخدام المركبات، كان هناك اهتمام كبير بنظام النقل الذكي الأكثر حداثة وفعالية ودقة (ITS) في مجال رؤية الكمبيوتر أو معالجة الصور الرقمية، يلعب تحديد كائنات معينة في صورة دورًا مهمًا في إنشاء صورة شاملة. هناك تحدٍ مرتبط بالتعرف على لوحة ترخيص السيارة (VLPR) بسبب الاختلاف في وجهة النظر، والتنسيقات المتعددة، وظروف الإضاءة غير الموحدة في وقت الحصول
... Show MorePatients infected with the COVID-19 virus develop severe pneumonia, which typically results in death. Radiological data show that the disease involves interstitial lung involvement, lung opacities, bilateral ground-glass opacities, and patchy opacities. This study aimed to improve COVID-19 diagnosis via radiological chest X-ray (CXR) image analysis, making a substantial contribution to the development of a mobile application that efficiently identifies COVID-19, saving medical professionals time and resources. It also allows for timely preventative interventions by using more than 18000 CXR lung images and the MobileNetV2 convolutional neural network (CNN) architecture. The MobileNetV2 deep-learning model performances were evaluated
... Show MoreBecause of their Physico‐chemical characteristics and its composition, the development of new specific analytical methodologies to determine some highly polar pesticides are required. The reported methods demand long analysis time, expensive instruments and prior extraction of pesticide for detection. The current work presents a new flow injection analysis method combined with indirect photometric detection for the determination of Fosetyl‐Aluminum (Fosetyl‐Al) in commercial formulations, with rapid and highly accurate determination involving only construction of manifold system combined with photometric detector without need some of the pre‐treatments to the sample before the analysis such a
Detecting protein complexes in protein-protein interaction (PPI) networks is a challenging problem in computational biology. To uncover a PPI network into a complex structure, different meta-heuristic algorithms have been proposed in the literature. Unfortunately, many of such methods, including evolutionary algorithms (EAs), are based solely on the topological information of the network rather than on biological information. Despite the effectiveness of EAs over heuristic methods, more inherent biological properties of proteins are rarely investigated and exploited in these approaches. In this paper, we proposed an EA with a new mutation operator for complex detection problems. The proposed mutation operator is formulate
... Show MoreIn this work Different weight of pure Zinc powder suspended particles in 4ml base engine Oil were used.
Intensity of Kα Line was measured for the suspended particles ,also for mixture which consist from Zinc particle blended with Engine base Oil. Calibration Curve was drawn between Ikα line Intensity and Zinc concentration at different operation condition. The Lower Limit detection (LLD) and Sensitivity (m) of Spectrometer were determined for different Zinc Concentration (Wt%). The results of LLD and m for Samples were analyzed at Operation Condition of 30KV,17mA is best from Samples were analyzed at Operation Condition of 25KV,15mA
The study included 200 samples were collected from children under two years included (50 samples from each of Cerebrospinal fluid, Blood, Stool and Urine) from, (Central Children Hospital and Children's Protections Educational Hospital) The Iraqi Ministry of Health, the Department of Health Baghdad .the period from the first of 2015 September to the first of December 2015, Were obtained isolates bacterial subjected to the cultural, microscopic and biochemical examination and diagnosed to the species by using vitek2 system .The results showed there were contamination in 6.5% of clinical samples. The diagnosed colonies which gave pink color on the MacConkey agar, golden yellow color on the Trypton Soy agar and green color on t
... Show MoreDust storms are typical in arid and semi-arid regions such as the Middle East; the frequency and severity of dust storms have grown dramatically in Iraq in recent years. This paper identifies the dust storm sources in Iraq using remotely sensed data from Meteosat-spinning enhanced visible and infrared imager (SEVIRI) bands. Extracted combined satellite images and simulated frontal dust storm trajectories, using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, are used to identify the most influential sources in the Middle East and Iraq. Out of 132 dust storms in Iraq during 2020–2023, the most frequent occurred in the spring and summer. A dust source frequency percentage map (DSFPM) is generated using ArcGIS so
... Show More