1267 Objectives Aim to evaluate 198Au nanoparticles (AuNP) biodistribution and uptake in a human prostate model for treatment. Many phytochemicals are known to have anti-tumor properties but have short half-lives in vivo. We hypothesized that using these phytochemicals to formulate and coat AuNP would inhibit enzyme cleavage and enhance their anti-tumor properties. Initial evaluations were performed in SCID mice bearing PC3 tumors. Methods : 198AuNP were formulated with the following gum Arabic, epigalocatechin gallate (EGCg) pomegranate extract and mangiferin extract. The resultant nanoparticles were evaluated in normal mice and in human prostate bearing SCID mice. The tumor bearing mice were injected intratumorally with 3-5 uCi of 198AuNP and euthanized at the following time points 30 min, 1,2,4 and 24 hr. Various organs were removed and counted along with standards to calculate the percent injected dose per organ and per gram. Results All nanoparticles showed high retention in the tumor with the 198AuNP formulated from mangiferin showing the highest retention 80.98 ± 13.39 %ID at 30 min and remaining steady out to 24 hr 79.82 ±10.55 % ID. The tumor uptake and retention was in the following order mangiferin> pomegranate (61.5 ± 26.4 %ID > EGCg 36.2 ± 12.5 %ID > gum Arabic 17.75.± 23.36 %ID. Conclusions : 198AuNP were stably formed using gum Arabic, EGCg, pomegranate extract and mangiferin. The 198AuNp were shown to be retained in high yields in prostate tumors demonstrating their potential for ablation of prostate cancer. Research Support This research supported by NSEI, MURR, Green Technology institute /MU. Al-Yasiri supported by the University of Baghdad and NSEI.
In this research Artificial Neural Network (ANN) technique was applied to study the filtration process in water treatment. Eight models have been developed and tested using data from a pilot filtration plant, working under different process design criteria; influent turbidity, bed depth, grain size, filtration rate and running time (length of the filtration run), recording effluent turbidity and head losses. The ANN models were constructed for the prediction of different performance criteria in the filtration process: effluent turbidity, head losses and running time. The results indicate that it is quite possible to use artificial neural networks in predicting effluent turbidity, head losses and running time in the filtration process, wi
... Show MoreThis investigation was carried out to study the treatment and recycling of wastewater in the cotton textile industry for an effluent containing three dyes: direct blue, sulphur black and vat yellow. The reuse of such effluent can only be made possible by appropriate treatment method such as chemical coagulation. Ferrous and ferric sulphate with and without calcium hydroxide were employed in this study as the chemical coagulants.
The results showed that the percentage removal of direct blue ranged between 91.4 and 94 , for sulphur black ranged between 98.7 and 99.5 while for vat yellow it was between 97 and 99.
In this paper, new method have been investigated using evolving algorithms (EA's) to cryptanalysis one of the nonlinear stream cipher cryptosystems which depends on the Linear Feedback Shift Register (LFSR) unit by using cipher text-only attack. Genetic Algorithm (GA) and Ant Colony Optimization (ACO) which are used for attacking one of the nonlinear cryptosystems called "shrinking generator" using different lengths of cipher text and different lengths of combined LFSRs. GA and ACO proved their good performance in finding the initial values of the combined LFSRs. This work can be considered as a warning for a stream cipher designer to avoid the weak points, which may be f
... Show MoreOver the past few years, ear biometrics has attracted a lot of attention. It is a trusted biometric for the identification and recognition of humans due to its consistent shape and rich texture variation. The ear presents an attractive solution since it is visible, ear images are easily captured, and the ear structure remains relatively stable over time. In this paper, a comprehensive review of prior research was conducted to establish the efficacy of utilizing ear features for individual identification through the employment of both manually-crafted features and deep-learning approaches. The objective of this model is to present the accuracy rate of person identification systems based on either manually-crafted features such as D
... Show More: Sound forecasts are essential elements of planning, especially for dealing with seasonality, sudden changes in demand levels, strikes, large fluctuations in the economy, and price-cutting manoeuvres for competition. Forecasting can help decision maker to manage these problems by identifying which technologies are appropriate for their needs. The proposal forecasting model is utilized to extract the trend and cyclical component individually through developing the Hodrick–Prescott filter technique. Then, the fit models of these two real components are estimated to predict the future behaviour of electricity peak load. Accordingly, the optimal model obtained to fit the periodic component is estimated using spectrum analysis and Fourier mod
... Show MoreSmart water flooding (low salinity water flooding) was mainly invested in a sandstone reservoir. The main reasons for using low salinity water flooding are; to improve oil recovery and to give a support for the reservoir pressure.
In this study, two core plugs of sandstone were used with different permeability from south of Iraq to explain the effect of water injection with different ions concentration on the oil recovery. Water types that have been used are formation water, seawater, modified low salinity water, and deionized water.
The effects of water salinity, the flow rate of water injected, and the permeability of core plugs have been studied in order to summarize the best conditions of low salinity
... Show MoreIn this paper, we used four classification methods to classify objects and compareamong these methods, these are K Nearest Neighbor's (KNN), Stochastic Gradient Descentlearning (SGD), Logistic Regression Algorithm(LR), and Multi-Layer Perceptron (MLP). Weused MCOCO dataset for classification and detection the objects, these dataset image wererandomly divided into training and testing datasets at a ratio of 7:3, respectively. In randomlyselect training and testing dataset images, converted the color images to the gray level, thenenhancement these gray images using the histogram equalization method, resize (20 x 20) fordataset image. Principal component analysis (PCA) was used for feature extraction, andfinally apply four classification metho
... Show More