In this study the Sub family of Nomiinae Robertson,1904 (Hyminoptera: Halictidae) was revised There were five species registered in our investigation:
In this study, we introduce new a nanocomposite of functionalize graphene oxide FGO and functionalize multi wall carbon nanotube (F-MWCNT-FGO).The formation of nanocomposite was confirmed by FT-IR ,XRD and SEM. The magnitude of the dielectric permittivity of the (F-MWCNT-FGO) nanocomposite appears to be very high in the low frequency range and show a unique negative permittivity at frequencies range from 400 Hz to 4000Hz. The ac conductivity of nanocomposite reaches 23.8 S.m-1 at 100Hz.
Two compounds,[2-amino-4-(4-nitro phenyl) 1,3-thiazole],(4) and [2-amino-4-(4-bromo phenyl) 1,3-thiazole],(5), were synthesized by refluxing thiourea (1) with each of para-ntiro and para-bomophanacyl bromides(2) and (3) respectively, in absolute methanol. Then, by reaction of [5] with 3,5-dinitrobenzoyl chloride in dimethylformamide (DMF) yielded (6) .On the other hand, reaction of (4) with chloroacetyl chloride in dry benzene afforded (7), which is upon treatment with thiourea in absolute methanol, af
... Show MoreA total of 680 fish specimens belonging to 31 species from the Yemeni coastal waters of the Red Sea were inspected for the isopod infestations. Four isopod species belonging to three families of the suborder Cymothoida were detected. These are: Aega psora (Linnaeus, 1758) from Lethrinus lentjan, Natatolana insignis Hobbins and Jones, 1993 from Abalistes stellatus, Excorallana tricornis (Hansen, 1890) from Epinephelus fuscoguttatus, E. guttatus and E. tauvina and Alcirona krebsi Hansen, 1890 from Epinephelus microdon. All these isopod species are reported here for the first time from the Yemeni coastal waters of the Red Se
... Show MoreSome new complexes of 4-(5-(1,5-dimethyl-3-oxo-2-phenyl pyrazolidin-4- ylimino)-3,3-dimethyl cyclohexylideneamino) -1,5- dimethyl-2- phenyl -1H- pyrazol -3(2H) –one (L) with Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Pd(II), Re(V) and Pt(IV) were prepared. The ligand and its metal complexes were characterized by phisco- chemical spectroscopic techniques. The spectral data were suggested that the (L) as a neutral tetradentate ligand is coordinated with the metal ions through two nitrogen and two oxygen atoms. These studies revealed Octahedral geometries for all metal complexes, except square planar for Pd(II) complex. Moreover, the thermodynamic activation parameters, such as ?E*, ?H, ?S, ?G and K are calculated from the TGA curves using Coa
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MorePathogenic microorganisms are becoming more and more resistant to antimicrobial agents. So the synthesis of new antimicrobial agents is very important. In this work, new 5-fluoroisatin-chalcone conjugates 5(a–g) were synthesized based on previous research that showed the modifications of the isatin moiety led to the synthesis of many derivatives that have antimicrobial activity. 4-aminoacetophenone reacts with 5-fluoroisatin to form Schiff base (3), which in turn reacts with two different groups of aromatic (carbocyclic and heterocyclic) aldehydes 4(a–g) separately to form the final compounds 5(a–g). Proton-nuclear magnetic resonance (¹H-NMR) and Fourier-transform infrared (FT-IR) spectroscopy were used to confirm the chemic
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreThe survey was carried out From January to April of 2018 on macrofungi samples collected from different places in Halabja province located in north eastern parts of Iraq-Kurdistan region. This region is rich in forest trees and pasture lands with diversity of shrubs and herbs and is expected to support the growth of several macro fungal species. However, this part of Kurdistan in Iraq is still unexplored from macrofungal point of view. In this paper three species from Pezizaceae and Pyronemataceae families that belonging to (Pezizales, Ascomycota), were reported from Iraqi Kurdistan. These macrofungal species are recorded for the first time from Iraq. Also the species were identified and showing their locations distributed on a map prepared
... Show MoreGestational diabetes mellitus (GDM) is a growing health concern that usually appears during the second and third trimester stage of pregnancy and is characterized by carbohydrate intolerance of variable severity. The aim of the present study was to scrutinize the relationship between the G972R polymorphism of the insulin receptor substrate-1 (IRS-1) gene with GDM in the Iraqi female population. One hundred and twenty of blood samples taken from healthy women (control) and women with gestational diabetes mellitus in 3rd trimester stage of pregnancy, fasting blood glucose (FBG) and HbA1c% measured to diagnose GDM, lipid profile (cholesterol, triglyceride, HDL, LDL, and VLDL), insulin concentration, insulin resistance and beta cell function to
... Show More