Artificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep learning model was utilized to resize images and feature extraction. Finally, different ML classifiers have been tested for recognition based on the extracted features. The effectiveness of each classifier was assessed using various performance metrics. The results show that the proposed system works well, and all the methods achieved good results; however, the best results obtained were for the Support Vector Machine (SVM) with a linear kernel.
This paper presents a combination of enhancement techniques for fingerprint images affected by different type of noise. These techniques were applied to improve image quality and come up with an acceptable image contrast. The proposed method included five different enhancement techniques: Normalization, Histogram Equalization, Binarization, Skeletonization and Fusion. The Normalization process standardized the pixel intensity which facilitated the processing of subsequent image enhancement stages. Subsequently, the Histogram Equalization technique increased the contrast of the images. Furthermore, the Binarization and Skeletonization techniques were implemented to differentiate between the ridge and valley structures and to obtain one
... Show MoreIn this paper, membrane-based computing image segmentation, both region-based and edge-based, is proposed for medical images that involve two types of neighborhood relations between pixels. These neighborhood relations—namely, 4-adjacency and 8-adjacency of a membrane computing approach—construct a family of tissue-like P systems for segmenting actual 2D medical images in a constant number of steps; the two types of adjacency were compared using different hardware platforms. The process involves the generation of membrane-based segmentation rules for 2D medical images. The rules are written in the P-Lingua format and appended to the input image for visualization. The findings show that the neighborhood relations between pixels o
... Show MoreMany image processing and machine learning applications require sufficient image feature selection and representation. This can be achieved by imitating human ability to process visual information. One such ability is that human eyes are much more sensitive to changes in the intensity (luminance) than the color information. In this paper, we present how to exploit luminance information, organized in a pyramid structure, to transfer properties between two images. Two applications are presented to demonstrate the results of using luminance channel in the similarity metric of two images. These are image generation; where a target image is to be generated from a source one, and image colorization; where color information is to be browsed from o
... Show MoreJPEG is most popular image compression and encoding, this technique is widely used in many applications (images, videos and 3D animations). Meanwhile, researchers are very interested to develop this massive technique to compress images at higher compression ratios with keeping image quality as much as possible. For this reason in this paper we introduce a developed JPEG based on fast DCT and removed most of zeros and keeps their positions in a transformed block. Additionally, arithmetic coding applied rather than Huffman coding. The results showed up, the proposed developed JPEG algorithm has better image quality than traditional JPEG techniques.
Bioinformatics is one of the computer science and biology sub-subjects concerned with the processes applied to biological data, such as gathering, processing, storing, and analyzing it. Biological data (ribonucleic acid (RNA), deoxyribonucleic acid (DNA), and protein sequences) has many applications and uses in many fields (data security, data segmentation, feature extraction, etc.). DNA sequences are used in the cryptography field, using the properties of biomolecules as the carriers of the data. Messenger RNA (mRNA) is a single strand used to make proteins containing genetic information. The information recorded from DNA also carries messages from DNA to ribosomes in the cytosol. In this paper, a new encryption technique bas
... Show MoreWith wide spread of internet, and increase the price of information, steganography become very important to communication. Over many years used different types of digital cover to hide information as a cover channel, image from important digital cover used in steganography because widely use in internet without suspicious. Since image is frequently compressed for storing and transmission, so steganography must counter the variations caused by loss compression algorithm. This paper describes a robust blind image steganography, the proposed method embeds the secret message without altering the quality by spraying theme on the blocks in the high order bits in color channel s
... Show MoreFuzzy Based Clustering for Grayscale Image Steganalysis
— To identify the effect of deep learning strategy on mathematics achievement and practical intelligence among secondary school students during the 2022/2023 academic year. In the research, the experimental research method with two groups (experimental and control) with a post-test were adopted. The research community is represented by the female students of the fifth scientific grade from the first Karkh Education Directorate. (61) female students were intentionally chosen, and they were divided into two groups: an experimental group (30) students who were taught according to the proposed strategy, and a control group (31) students who were taught according to the usual method. For the purpose of collecting data for the experimen
... Show MoreThe present study aims at exploring tow cultural intelligence scales of preparatory school students. It also aims at finding out the statistically significant differences according to gender and specification. Accordingly, the present study seeks to answer the following questions:
- Is there cultural intelligence of the preparatory school students?
- Is there any statistically significant differences according to gender and specification variables?
- Is there a scale more effective than cultural intelligence scales?
The stratified random sampling method is used to for selecting the sample of (216) students of scientific and humanistic specifications from
... Show More