Catalytic reduction is considered an effective approach for the reduction of toxic organic pollutants from the environment, but finding an active catalyst is still a big challenge. Herein, Ag decorated CeO2 catalyst was synthesized through polyol reduction method and applied for catalytic reduction (conversion) of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). The Ag decorated CeO2 catalyst displayed an outstanding reduction activity with 99% conversion of 4-NP in 5 min with a 0.61 min−1 reaction rate (k). A number of structural characterization techniques were executed to investigate the influence of Ag on CeO2 and its effect on the catalytic conversion of 4-NP. The outstanding catalytic performances of the Ag-CeO2 catalyst can be assigned to strong synergistic interaction of Ag with CeO2 that prevents the aggregation of Ag species and also, helps in the exposure of more surface active metallic Ag0. In addition, the Ag-CeO2 catalyst shown remarkable durability up to several (five) repeated rounds, certifying its everyday applicability.
This study investigates the improvement of Iraqi atmospheric gas oil characteristics which contains 1.402 wt. % sulfur content and 16.88 wt. % aromatic content supplied from Al-Dura Refinery by using hydrodesulfurization (HDS) process using Ti-Ni-Mo/γ-Al2O3 prepared catalyst in order to achieve low sulfur and aromatic saturation gas oil. Hydrodearomatization (HDA) occurs simultaneously with hydrodesulfurization (HDS) process. The effect of titanium on the conventional catalyst Ni-Mo/γ-Al2O3 was investigated by physical adsorption and catalytic activity test. Ti-Ni-Mo/γ-Al2O3 catalyst was prepared under vacuum impregnation condition to ensure efficient precipitation of metals within the carrier γ-Al2O3. The loading percentage of met
... Show MoreThe hydroconversion of Iraqi light straight run naphtha was studied on zeolite catalyst. 0.3wt.%Pt/HMOR catalyst was prepared locally and used in the present work. The hydroconversion performed on a continuous fixed-bed laboratory reaction unit. Experiments were performed in the temperature range of 200 to 350°C, pressure range of 3 to 15 bars, LHSV range of 0.5-2.5h-1, and the hydrogen to naphtha ratio of 300.
The results show that the hydroconversion of Iraqi light straight naphtha increases with increase in reaction temperature and decreases with increase in LHSV.
High octane number isomers were formed at low temperature of 240°C. The selectivity of hydroisomerization improved by increasing reaction pressu
... Show MoreTwo methods were established to separate cobalt from the spent catalyst CoMo which also contain Co, Al and Fe. The first method was the precipitation technique by controlling the pH. At pH 5, 76% of the cobalt which was collected with 1.4% Al and 0.5% Fe as contaminants. The second method was the anion exchange by using Amberlite 400 resin, 100% of the cobalt and was collected with 99.46% purity.The only contaminant was Fe with 0.54% with no Al. For a large scale production of cobalt from this spent catalyst, a batch process was designed with a production of 80 grams per batch by using the anion exchange technique. Kilograms quantities of Co were collected.
The present work reports a direct experimental comparison of the catalytic hydrodesulfurization of
thiophene over Co-Mo/Al2O3 in fixed- and fluidized-bed reactors under the same conditions. An
experimental pilot plant scale was constructed in the laboratories of chemical engineering department,
Baghdad University; fixed-bed unit (2.54 cm diameter, and 60cm length) and fluidized-bed unit (diameter of 2.54 cm and 40 cm long with a separation zone of 30 cm long and 12.7 cm diameter). The affecting
variables studied in the two systems were reaction temperature of (308 – 460) oC, Liquid hourly space
velocity of (2 – 5) hr-1, and catalyst particle size of (0.075-0.5) mm. It was found in both operations that the
conversion
Esterification considers the most important reaction in biodiesel production. In this study, oleic acid was used as a suggested feedstock in order to study and simulate production of biodiesel. The batch esterification reaction of oleic acid was carried out at various operating conditions; temperature from 40 to 70 °C, ethanol to oleic acid molar ratio from 3/1 and 6/1 and a reaction time up to 180 min.
The catalyst used was prepared NaY zeolite, which is added to the reaction mixture as 2, 5 and 10 wt.% of oleic acid.
The results show that the optimum conditions, gives 0.81 conversion of oleic acid, were 6/1 molar ratio of ethanol/oleic acid, 5 wt.% NaY relative to initial oleic acid, 70°C and 60 minutes. The activation energy o
Spent hydrodesulfurization (Co-Mo/γ-Al2O3) catalyst generally contains valuable metals like molybdenum (Mo), cobalt (Co), aluminium (Al) on a supporting material, such as γ-Al2O3. In the present study, a two stages alkali/acid leaching process was conducted to study leaching of cobalt, molybdenum and aluminium from Co-Mo/γ-Al2O3 catalyst. The acid leaching of spent catalyst, previously treated by alkali solution to remove molybdenum, yielded a solution rich in cobalt and aluminium.
Development and population expansion have the lion's share of driving up the fuel cost. Biodiesel has considerable attention as a renewable, ecologically friendly and alternative fuel source. In this study, CaO nanocatalyst is produced from mango leaves as a catalysis for the transesterification of waste cooking oil (WCO) to biodiesel. The mango tree is a perennial plant, and its fruit holds significant economic worth due to its abundance of vitamins and minerals. This plant has a wide geographical range and its leaves can be utilized without any negative impact on its growth and yield. An analysis was conducted to determine the calcium content in the fallen leaves, revealing a significant quantity of calcium that holds potential fo
... Show MoreAn experimental study on a KIA pride (SAIPA 131) car model with scale of 1:14 in the wind tunnel was made beside the real car tests. Some of the modifications to passive flow control which are (vortex generator, spoiler and slice diffuser) were added to the car to reduce the drag force which its undesirable characteristic that increase fuel consumption and exhaust toxic gases. Two types of calculations were used to determine the drag force acting on the car body. Firstly, is by the integrating the values of pressure recorded along the pressure taps (for the wind tunnel and the real car testing), secondly, is by using one component balance device (wind tunnel testing) to measure the force. The results show that, the average drag estimated on
... Show MoreAn experimental study on a KIA pride (SAIPA 131) car model with scale of 1:14 in the wind tunnel was made beside the real car tests. Some of the modifications to passive flow control which are (vortex generator, spoiler and slice diffuser) were added to the car to reduce the drag force which its undesirable characteristic that increase fuel consumption and exhaust toxic gases. Two types of calculations were used to determine the drag force acting on the car body. Firstly, is by the integrating the values of pressure recorded along the pressure taps (for the wind tunnel and the real car testing), secondly, is by using one component balance device (wind tunnel testing) to measure the force. The results show that, the avera
... Show More