Angiogenesis is important for tissue during normal physiological processes as well as in a number of diseases, including cancer. Drug resistance is one of the largest difficulties to antiangiogenesis therapy. Due to their lower cytotoxicity and stronger pharmacological advantage, phytochemical anticancer medications have a number of advantages over chemical chemotherapeutic drugs. In the current study, the effectiveness of AuNPs, AuNPs-GAL, and free galangin as an antiangiogenesis agent was evaluated. Different physicochemical and molecular approaches have been used including the characterization, cytotoxicity, scratch wound healing assay, and gene expression of VEGF and ERKI in MCF-7 and MDA-MB-231 human breast cancer cell line. Results obtained from MTT assay show cell growth reduction in a time- and dose-dependent aspect; also, in comparison to individual treatment, a synergistic impact was indicated. CAM assay results demonstrated galangin-gold nanoparticle capacity to suppress angiogenesis in chick embryo. Additionally, altering VEGF and ERKI gene expression was recorded. Taken together, all the results can conclude that galangin-conjugated gold nanoparticles can be a promising antiangiogenesis supplemental drug in breast cancer treatment.
Graphite nanoparticles were successfully synthesized using mixture of H2O2/NH4OH with three steps of oxidation. The process of oxidations were analysis by XRD and optics microscopic images which shows clear change in particle size of graphite after every steps of oxidation. The method depend on treatments the graphite with H2O2 in two steps than complete the last steps by reacting with H2O2/NH4OH with equal quantities. The process did not reduces the several sheets for graphite but dispersion the aggregates of multi-sheets carbon when removed the Van Der Waals forces through the oxidation process.
Magnetized iron oxide nanoparticles (NPs) were prepared using Eucalyptus leaf extract and then coated with CTAB (Cetrimonium bromide) to increase efficiency. The prepared and modified (NPs) were characterized using AFM, FTIR, and X-ray techniques. The adsorption of the dye reactive blue RB 238 on coated (NPs) was investigated. The effect of various experimental factors, such as the initial concentration of the dye, the amount of adsorbent, pH and temperature on the removal of RB238 was studied. The best conditions for dye removal were found to be 298 K in an acidic medium of pH = 3 and an appropriate dose of the adsorbent of 0.15 g per 25 mg/L to achieve the best color removal of 90% within 60 minutes. The pseudo-second-order re
... Show MoreThe direct electron transfer behavior of hemoglobin that is immobilized onto screen-printed carbon electrode (SPCE) modified with silver nanoparticles (AgNPs) and chitosan (CS) was studied in this work. Cyclic voltametry and spectrophotometry were used to characterize the hemoglobin (Hb) bioconjunction with AgNPs and CS. Results of the modified electrode showed quasi-reversible redox peaks with a formal potential of (-0.245V) versus Ag/AgCl in 0.1M phosphate buffer solution (PBS), pH7, at a scan rate of 0.1Vs-1. The charge transfer coefficient (α) was 0.48 and the apparent electron transfer rate constant (Ks) was 0.47s-1. The electrode was used as a hydrogen peroxide biosensor with a line
... Show MoreThis work was carried out at the Glass House at the Faculty of Agriculture/ Anbar University in the period between 2016 to 2017 Nano-iron and dry yeast extract were added to evaluate the response of maize productivity. Three concentrations of nano-iron, 0, 50, and 100 mg, were sprayed on the leaves The yeast extract of three concentrations 0, 100 and 150 grams per liter were sprayed on the leaves. The results showed the superiority of the treatments that were sprayed with nanoparticles with the highest rate of chlorophyll, the seed protein ratio and the percentage of seed oil. Significant levels were also recorded when spraying the plants with dry yeast extract. The interactions of 100 mg of nanotube and 150 g / l dry yeast extract chara
... Show Morenew, simple and fast solid-phase extraction method for separation and preconcentration of trace theophylline in aqueous solutions was developed using magnetite nanoparticles (MIONPs) coated with aluminium oxide (AMIONPs) and modified with palmitate (P) as an extractor (P@AMIONPs). It has shown that the developed method has a fast absorbent rate of the theophylline at room temperature. The parameters that affect the absorbent of theophylline in the aqueous solutions have been investigated such as the amount of magnetite nanoparticle, pH, standing time and the volume, concentration of desorption solution. The linear range, limit of quantification (LOQ) and limit of detection (LOD) for the determination of theophylline were 0.05-2.450 μg mL-
... Show MoreQ-switch Nd: YAG laser of wavelengths 235nm and 1,460nm with energy in the range 0.2 J to 1J and 1Hz repetition rate was employed to synthesis Ag/Au (core/shell) nanoparticles (NPs) using pulse laser ablation in water. In this synthesis, initially the silver nano-colloid prepared via ablation target, this ablation related to Au target at various energies to creat Ag/Au NPs. Surface Plasmon Resonance (SPR), surface morphology and average particle size identified employing: UV-visible spectrophotometer, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The absorbance spectra of Ag NPs and Ag/Au NPs showed sharp and single peaks around 400nm and 410nm, respec
Cocoon of larva
due to the presence of chemoresistance and the risk of tumor recurrence and metastasis. There is a pressing necessity to develop efficient treatments to improve response for treatment and increase prolong survival of breast cancer patients. Photodynamic therapy (PDT) has attracted interest for its features as a noninvasive and relatively selective cancer treatment. This method relies on light-activated photosensitizers that, upon absorbing light, generate reactive oxygen species (ROS) with powerful cell-killing outcomes. Nuclear factor kappa B (NF-κB), a transcription factor, plays a key role in cancer development by regulating cell proliferation, differentiation, and survival. Inhibiting NF-κB can sensitize tumor cells to chemotherapeuti
... Show More