This research studies the effect of particle packing density on sintering TiO2 microstructure. Sintering experiment was conducted on compacts involving of monodisperse spherical TiO2 particles. The experimental results are modeled using L2-Regression technique in studing the effect of two theoretical values of 55% and 69% of initial packing densities. The mathematical simulation shows that the lower values of density compacts sintered fast to theoretical density and this reflects that particle packing density improved densification rate because of the competing influence of grain growth at higher values of densities.
Survival analysis is widely applied in data describing for the life time of item until the occurrence of an event of interest such as death or another event of understudy . The purpose of this paper is to use the dynamic approach in the deep learning neural network method, where in this method a dynamic neural network that suits the nature of discrete survival data and time varying effect. This neural network is based on the Levenberg-Marquardt (L-M) algorithm in training, and the method is called Proposed Dynamic Artificial Neural Network (PDANN). Then a comparison was made with another method that depends entirely on the Bayes methodology is called Maximum A Posterior (MAP) method. This method was carried out using numerical algorithms re
... Show MoreDensities of double salt [(NH4)2Fe(SO4)2.6H2O] dissolved in distilled water and in ethylene glycol at three temperatures (298.15,303.15 and 308.15)k have been utilized to calculate the apparent molar volume , limiting apparent molar volume ,experimental slop . These results provide as information about solute-solvent, solute-solute interaction and structure-forming, structure-breaking tendency from partial molar expansibility .
The proper operation, and control of wastewater treatment plants, is receiving an increasing attention, because of the rising concern about environmental issues. In this research a mathematical model was developed to predict biochemical oxygen demand in the waste water discharged from Abu-Ghraib diary factory in Baghdad using Artificial Neural Network (ANN).In this study the best selection of the input data were selected from the recorded parameters of the wastewater from the factory. The ANN model developed was built up with the following parameters: Chemical oxygen demand, Dissolved oxygen, pH, Total dissolved solids, Total suspended solids, Sulphate, Phosphate, Chloride and Influent flow rate. The results indicated that the constructed A
... Show MoreThe uptake of Cd(II) ions from simulated wastewater onto olive pips was modeled using artificial neural network (ANN) which consisted of three layers. Based on 112 batch experiments, the effect of contact time (10-240 min), initial pH (2-6), initial concentration (25-250 mg/l), biosorbent dosage (0.05-2 g/100 ml), agitation speed (0-250 rpm) and temperature (20-60ºC) were studied. The maximum uptake (=92 %) of Cd(II) was achieved at optimum parameters of 60 min, 6, 50 mg/l, 1 g/100 ml, 250 rpm and 25ºC respectively.
Tangent sigmoid and linear transfer functions of ANN for hidden and output layers respectively with 7 neurons were sufficient to present good predictions for cadmium removal efficiency with coefficient of correlatio
... Show MoreThe study aims to predict Total Dissolved Solids (TDS) as a water quality indicator parameter at spatial and temporal distribution of the Tigris River, Iraq by using Artificial Neural Network (ANN) model. This study was conducted on this river between Mosul and Amarah in Iraq on five positions stretching along the river for the period from 2001to 2011. In the ANNs model calibration, a computer program of multiple linear regressions is used to obtain a set of coefficient for a linear model. The input parameters of the ANNs model were the discharge of the Tigris River, the year, the month and the distance of the sampling stations from upstream of the river. The sensitivity analysis indicated that the distance and discharge
... Show MoreWe study the physics of flow due to the interaction between a viscous dipole and boundaries that permit slip. This includes partial and free slip, and interactions near corners. The problem is investigated by using a two relaxation time lattice Boltzmann equation with moment-based boundary conditions. Navier-slip conditions, which involve gradients of the velocity, are formulated and applied locally. The implementation of free-slip conditions with the moment-based approach is discussed. Collision angles of 0°, 30°, and 45° are investigated. Stable simulations are shown for Reynolds numbers between 625 and 10 000 and various slip lengths. Vorticity generation on the wall is shown to be affected by slip length, angle of incidence,
... Show MoreHydro cracking of heavy oil is used in refinery to produce invaluable products. In this research, a model of hydro cracking reactor has been used to study the behavior of heavy oil in hydro cracking under the conditions recommended by literature in terms lumping of feed and products. The lumping scheme is based on five lumps include: heavy oil, vacuum oil, distillates, naphtha and gases. The first order kinetics was assumed for the conversion in the model and the system is modeled as an isothermal tubular reactor. MATLAB 6.1 was used to solve the model for a five lump scheme for different values of feed velocity, and temperature.
Coaxial (wire-cylinder) electrodes arrangements are widely used for electrostatic deposition of dust particles in flue gases, when a high voltage is applied to electrodes immersed in air and provide a strongly non-uniform electric field. The efficiency of electrostatic filters mainly depends on the value of the applied voltage and the distribution of the electric field. In this work, a two-dimensional computer simulation was constructed to study the effect of different applied voltages (20, 22, 25, 26, 28, 30 kV) on the inner electrode and their effect on the efficiency of the electrostatic precipitator. Finite Element Method (FEM) and COMSOL Multiphysics software were used to simulate the cross section of a wire cylinder. The results sh
... Show MoreThe research aims to find ways to minimize the use of quantities of chemical fertilizers in agriculture in order to get to an environment that is free of contaminants. Magnetized water technology used in the experience of planting seeds of tomatoes Thomson type to obtain a higher efficiency to absorb fertilizer NRK in the protected environment of the period from February to June. Magnetized water system used locally made levels Gaues (4800,2500,1500) concentrations of 50 to 100% for each level and the rate of (4) replicates, and results indicated that the severity of the magnet (4800 Gaues) and a concentration of 50% gave the highest percentage of tomato fruit size and intensity ( 1500 Gaues) and a concentration of 100% did not give any inc
... Show More