Four Co(II), (C1); Ni(II), (C2); Cu(II), (C3) and Zn(II), (C4) chelates have been synthesized with 1-(4-((2-amino- 5‑methoxy)diazenyl)phenyl)ethanone ligand (L). The produced compounds have been identified by using spectral studies, elemental analysis (C.H.N.O), conductivity and magnetic properties. The produced metal chelates were studied using molar ratio as well as sequences contrast types. Rate of concentration (1 ×10 4 - 3 ×10 4 Mol/L) sequence Beer’s law. Compound solutions have been noticed height molar absorptivity. The free of ligand and metal chelates had been applied as disperse dyes on cotton fabrics. Furthermore, the antibacterial activity of the produced compounds against various bacteria had been investigated. For the gained datum, a tetrahedral geometrical structure has been suggested for each primed complex. Molecular docking investigation was carried out to ascertain the inhibitory action of the studied compounds against 1HNJ protein, the target enzyme for the antimicrobial agents. The findings showed that, when compared to other compounds, (C1) has the highest binding affinity. Therefore, these molecules might make good candidates for antimicrobials. The quantum chemical parameters are calculated, and the molecular structure complexes were theoretically optimized.
Based on the density functional theory (DFT) , the stability of molecular complexes has been predicted according to hard-soft acid base (HSAB) theory. Relative stability of products and reactivity of soft base sulfide derivatives with halogens (Iodine , Bromine , Chlorine) as soft acid was studied to determine the relative ability of these reactants causing the reaction to be more spontaneous.
DFT at the levels of B3LYP/3-21G and B3LYP/3-21G (d) was used to study HOMO LUMO energy gaps , bonds length and total energy to calculate the softness sequence of each type of acid or base mentioned in this work. All cases studied prove that iodine can be considered as the most softness acid and ethyl methyl sulfide≈ dimethyl sulfide the most
In this paper, we introduce and study new types of soft open sets and soft closed
sets in soft bitopological spaces (X,~ ,~ ,E) 1 2 , namely, (1,2)*-maximal soft open
sets, (1,2)*-maximal soft (1,2)*-pre-open sets, semi (1,2)*-maximal soft (1,2)*-preopen
sets, (1,2)*-maximal soft closed sets, (1,2)*-maximal soft (1,2)*-pre-closed
sets, (1,2)*-minimal soft open sets, (1,2)*-minimal soft (1,2)*-pre-open sets, (1,2)*-
minimal soft closed sets, (1,2)*-minimal soft (1,2)*-pre-closed sets, and semi (1,2)*-
minimal soft (1,2)*-pre-closed sets. Also, properties and the relation among these
concepts have been studied.
New ligands, N1, N4-bis (benzo[d]thiazol-2- ylcarbamothioyl) succinamide (L1) and N1, N4- bis (benzylcarbamothioyl)succinamide (L2), derived from succinyl chloride and 2-amino benzothiazole or benzylamine, respectively, have been used to prepare a set of transition metal complexes with the general formula [M2(L)Cl4], where L=L1 or L2, M = Mn(II), Ni(II), Cu(II), Cd(II), Co(II), Zn(II) or Hg(II). The synthesized compounds were characterized using various analytical techniques including TGA, 13C NMR, mass spectroscopy, 1H and Fourier-transform infrared (FTIR) spectroscopy, magnetic measurement, molar conductivity, electronic spectrum, (%M, %C, %H, %N) and atomic absorption flame (AAF) analysis. The results showed that (L1, L2) bin
... Show MoreRKRAS L. K. Abdul Karem, F. H. Ganim, Biochemical and Cellular Archives, 2018 - Cited by 2
SYNTHESIS, CHARACTERIZATION, STRUCTURAL, THERMAL, POM STUDIES, ANTIMICROBIAL AND DNA CLEAVAGE ACTIVITY OF A NEW SCHIFF BASE-AZO LIGAND AND ITS COMPLEXATION WITH SELECTED METAL IONS
Pathogenic microorganisms are becoming more and more resistant to antimicrobial agents. So the synthesis of new antimicrobial agents is very important. In this work, new 5-fluoroisatin-chalcone conjugates 5(a–g) were synthesized based on previous research that showed the modifications of the isatin moiety led to the synthesis of many derivatives that have antimicrobial activity. 4-aminoacetophenone reacts with 5-fluoroisatin to form Schiff base (3), which in turn reacts with two different groups of aromatic (carbocyclic and heterocyclic) aldehydes 4(a–g) separately to form the final compounds 5(a–g). Proton-nuclear magnetic resonance (¹H-NMR) and Fourier-transform infrared (FT-IR) spectroscopy were used to confirm the chemic
... Show MoreNew tetradentate Schiff base [H2L] namely [2,2׳ -(ethane-1,2- diylbis (azan-1-ylylidene) diacetic acid)] was prepared from condensation of ethylenediamine with glyoxylic acid in ethanol as a solvent in presence of drops of 48% HBr .The structure of ligand (H2L) was characterized by,F-IR, U.V-Vis.,1H-,13C-NMR, pectrophotometer,melting point and elemental microanalysis C.H.N. Metal complexes of the ligand (H2L) in general Molecular formula [M(L)(H2O)2], where M= Co(II), Ni(II), Cu(II), Mn(II) and Hg(II); L=(C6H8N2O4) were synthesized were characterized by, Atomic absorption, F-IR, U.V-Vis. spectra, molar conductivity and magnetic susceptibility.It was found that all the complexes showed octahedral geometries.And
... Show MoreABSTRACT: Oxadiazole ring is a heterocyclic molecule with an oxygen and two nitrogen atoms spread throughout its five-membered structure. There are four different isomers that have been discovered, Because of their wide applications in a range of sectors, including medications . Some of these biological activity are; anticonvulsant capacity, anticancer as well, antibacterial, antiviral, antifungal, antimalarial, antitubercular, anti-asthmatic, antidepressant, antidiabetic, antioxidant, antiparkinsonian, analgesic and anti-inflammatory, are just some of the therapeutic uses that have drawn attention to drug candidates containing an oxadiazole moiety. This review, we will examine the various methods of oxadiazole synthesis. The mo
... Show MoreInnovative various Schiff bases and their Co(II), Ni(II) and Cu(II) and Hg(II) compounds made by the condensation of 4-amino antipyrine with derived aminobenzoic acid (2-aminobenzoic acid, 3-aminobenzoic acid, and 4-aminobenzoic acid ) have been prepared by conventional approaches. These complexes were described by magnetic sensibility analysis, FT-IR spectra, and molar-conductance and elemental analysis. Analytical values appeared which the mixed-ligand complexes presented ratio about 2:1 (ligand: metal) with the chelation 4 or 6. The prepared compounds offered a good effect on the organisms; bacteria Staphylococcus-aurous, Escherichia-coli and fungi C. albicans, A. niger. Also, the biological products signalize which the mixed compl
... Show More