The Current status of biomedical waste of solid, liquid and gaseous formulations from medical and educational laboratories in Iraqi universities and research centers was assessed using a well-structured questionnaire. The questionnaire was distributed to scientists, researchers, medical technicians and graduate students who are directly involved in laboratoiy daily activities. The responses were analyzed statistically and interpreted accordingly. The results showed diat the frequency of questionnaire respondent's affiliation gave the highest percentage frequency (69.4%) with the questionnaire of Technical Medical Institute/Al-Mansour while constitute die responses of the Dnig Control Department/Ministry of Sciences and Technology gave the lowest percentage frequency of die collected questionnaires (0.9%). Regarding to gender distribution was considered only among participants from two institutes whereas the other numbers were not meaningful. This showedmore females participants (79.1 %) among the TMI/MTU respondents than males (25.0%). The storage and assembling the chemical in appropriate, non-react able packaginga slightly higher positive response frequency compared to disagreement negative response (39.6 vs. 34.2%, respectively). Although, there were a few questions answered favorably toward a reasonable awareness about the dual use research and technology but it is till unsatisfactory for die rest of the questions raised in tiiis important category. Biological waste management was very poor. All die workers in the study group work except incentral public health of laboratories have not good practices in biowaste management.
Chromium oxide (Cr2O3) doped ZnO nanoparticles were prepared by pulsed laser deposition (PLD) technique at different concentration ratios (0, 3, 5, 7 and 9 wt %) of ZnO on glass substrate. The effects of ZnO dopant on the average crystallite size of the synthesized nanoparticles was examined By X-ray diffraction. The morphological features were detected using atomic force microscopy (AFM). The optical band gap value was observed to range between 2.78 to 2.50 eV by UV-Vis absorption spectroscopy, with longer wavelength shifted in comparison with that of the bulk Cr2O3 (~3eV). Gas sensitivity, response, and recovery times of the sensor in the presence of NH3
... Show MoreIn this study, the use of non-thermal plasma theory to remove toxic gases emitted from a vehicle was experimentally investigated. A non-thermal plasma reactor was constructed in the form of a cylindrical tube made of Pyrex glass. Two stainless steel rods were placed inside the tube to generate electric discharge and plasma condition, by connecting with a high voltage power supply (up to 40 kV). The reactor was used to remove the contaminants of a 1.25-liter 4-cylinder engine at ambient conditions. Several tests have been carried out for a ranging speed from 750 to 4,500 rpm of the engine and varying voltages from 0 to 32 kV. The gases entering the reactor were examined by a gas analyzer and the gases concentration ratio
... Show MoreIn this research, the mechanism of cracks propagation for epoxy/ chopped carbon fibers composites have been investigated .Carbon fibers (5%, 10%, 15%, and 20%) by weight were used to reinforce epoxy resin. Bending test was carried out to evaluate the flexural strength in order to explain the mechanism of cracks propagation. It was found that, the flexural strength will increase with increasing the percentage weight for carbon fibers. At low stresses, the cracks will state at the lower surface for the specimen. Increasing the stresses will accelerate the speed of cracks until fracture accorded .The path of cracks is changed according to the distributions of carbon fibers
3D models delivered from digital photogrammetric techniques have massively increased and developed to meet the requirements of many applications. The reliability of these models is basically dependent on the data processing cycle and the adopted tool solution in addition to data quality. Agisoft PhotoScan is a professional image-based 3D modelling software, which seeks to create orderly, precise n 3D content from fixed images. It works with arbitrary images those qualified in both controlled and uncontrolled conditions. Following the recommendations of many users all around the globe, Agisoft PhotoScan, has become an important source to generate precise 3D data for different applications. How reliable is this data for accurate 3D mo
... Show MoreHigh smoke emissions, nitrogen oxide and particulate matter typically produced by diesel engines. Diminishing the exhausted emissions without doing any significant changes in their mechanical configuration is a challenging subject. Thus, adding hydrogen to the traditional fuel would be the best practical choice to ameliorate diesel engines performance and reduce emissions. The air hydrogen mixer is an essential part of converting the diesel engine to work under dual fuel mode (hydrogen-diesel) without any engine modification. In this study, the Air-hydrogen mixer is developed to get a homogenous mixture for hydrogen with air and a stoichiometric air-fuel ratio according to the speed of the engine. The mixer depends on the balance between th
... Show MoreThis paper deals with numerical approximations of a one-dimensional semilinear parabolic equation with a gradient term. Firstly, we derive the semidiscrete problem of the considered problem and discuss its convergence and blow-up properties. Secondly, we propose both Euler explicit and implicit finite differences methods with a non-fixed time-stepping procedure to estimate the numerical blow-up time of the considered problem. Finally, two numerical experiments are given to illustrate the efficiency, accuracy, and numerical order of convergence of the proposed schemes.
Organic contaminants are used to be found in industrial wastewater treatment procedures, and heavy metal ion removal is difficult. Photo Fenton reaction activity was exploited in this study to decompose organic contaminants using a functional composite hydrogel. Polyacrylonitrile (PAN), Fe3O4 particles, and graphene oxide make up the hydrogel (GO). It is made from GO/ Fe3O4 and is made using the precipitation technique. GO is made from graphite using the Hummers process. And it has exceptional mechanical strength and Photo-Fenton activity as a result of various breakdown data that were influenced differently, such as H2O2 concentration, dye concentration, temper
... Show More