The behavior and shear strength of full-scale (T-section) reinforced concrete deep beams, designed according to the strut-and-tie approach of ACI Code-19 specifications, with various large web openings were investigated in this paper. A total of 7 deep beam specimens with identical shear span-to-depth ratios have been tested under mid-span concentrated load applied monotonically until beam failure. The main variables studied were the effects of width and depth of the web openings on deep beam performance. Experimental data results were calibrated with the strut-and-tie approach, adopted by ACI 318-19 code for the design of deep beams. The provided strut-and-tie design model in ACI 318-19 code provision was assessed and found to be unsatisfactory for deep beams with large web openings. A simplified empirical equation to estimate the shear strength for deep T-beams with large web openings based on the strut-and-tie model was proposed and verified with numerical analysis. The numerical study considered three-dimensional finite element models, in ABAQUS software, that have been developed to simulate and predict the performance of deep beams. The results of numerical simulations were in good agreement and exhibited close correlation with the experimental data. The test results showed that the enlargement in the size of web openings substantially reduces the elements' shear capacity. The experiments revealed that increasing the width of the openings has more effect than the depth at reducing the load-carrying capacity.
Arabic text categorization for pattern recognitions is challenging. We propose for the first time a novel holistic method based on clustering for classifying Arabic writer. The categorization is accomplished stage-wise. Firstly, these document images are sectioned into lines, words, and characters. Secondly, their structural and statistical features are obtained from sectioned portions. Thirdly, F-Measure is used to evaluate the performance of the extracted features and their combination in different linkage methods for each distance measures and different numbers of groups. Finally, experiments are conducted on the standard KHATT dataset of Arabic handwritten text comprised of varying samples from 1000 writers. The results in the generatio
... Show MoreThe current research seeks to identify the most important humanitarian issues of a sacred and very important group in all the heavenly religions and human societies, namely the elderly, to identify their significant problems and health problems, and What are the effects of these problems on their mental health and which is the ultimate goal of human resources in All parts of the world? The study relied on what is available from the sources in the literature starting from the messages of heaven and the Islamic religion followed with humanitarian, social, legal and psychological postulates. The research included four systematic chapters included the definition research and identification of the problem, importance, objectives and terminolo
... Show MoreThe article is devoted to the Russian-Arabic translation, a particular theory of which has not been developed in domestic translation studies to the extent that the mechanisms of translation from and into European languages are described. In this regard, as well as with the growing volumes of Russian-Arabic translation, the issues of this private theory of translation require significant additions and new approaches. The authors set the task of determining the means of translation (cognitive and mental operations and language transformations) that contribute to the achievement of the most equivalent correspondences of such typologically different languages as Russian and Arabic. The work summarizes and analyzes the accumulated exper
... Show MoreThyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid dise
... Show MoreBiodiesel production from microalgae depends on the biomass and lipid production. Both biomass and lipid accumulation is controlled by several factors. The effect of various culture media (BG11, BBM, and Urea), nutrients stress [nitrogen (N), phosphorous (P), magnesium (Mg) and carbonate (CO3)] and gamma (γ) radiation on the growth and lipid accumulation of Dictyochloropsis splendida were investigated. The highest biomass and lipid yield of D. splendida were achieved on BG11 medium. Cultivation of D. splendida in a medium containing 3000 mg L−1 N, or 160 mg L−1 P, or 113 mg L−1 Mg, or 20 mg L-1 CO3, led to enhanced growth rate. While u
... Show Moreيعتقد البعض ان مفهوم العلم يعني الآلات والاجهزة العلمية (تقنيات التعليم) وهي لا تختلف عن مفهوم تكنولوجيا المعلومات , ويعد هذا الاعتقاد خاطئ , لان العلم هو بناء المعرفة العلمية المنظمة والتي يتم التوصل اليها عن طريق البحث العلمي , اما تكنولوجيا المعلومات فهي "التطبيقات العملية للمعرفة العلمية في مختلف المجالات ذات الفائدة المباشرة بحياة الانسان, او هي النواحي التطبيقية للعلم وما يرتبط بها من آلات واجهزة".
Face recognition, emotion recognition represent the important bases for the human machine interaction. To recognize the person’s emotion and face, different algorithms are developed and tested. In this paper, an enhancement face and emotion recognition algorithm is implemented based on deep learning neural networks. Universal database and personal image had been used to test the proposed algorithm. Python language programming had been used to implement the proposed algorithm.
Software-defined networking (SDN) is an innovative network paradigm, offering substantial control of network operation through a network’s architecture. SDN is an ideal platform for implementing projects involving distributed applications, security solutions, and decentralized network administration in a multitenant data center environment due to its programmability. As its usage rapidly expands, network security threats are becoming more frequent, leading SDN security to be of significant concern. Machine-learning (ML) techniques for intrusion detection of DDoS attacks in SDN networks utilize standard datasets and fail to cover all classification aspects, resulting in under-coverage of attack diversity. This paper proposes a hybr
... Show More