The ability of the human brain to communicate with its environment has become a reality through the use of a Brain-Computer Interface (BCI)-based mechanism. Electroencephalography (EEG) has gained popularity as a non-invasive way of brain connection. Traditionally, the devices were used in clinical settings to detect various brain diseases. However, as technology advances, companies such as Emotiv and NeuroSky are developing low-cost, easily portable EEG-based consumer-grade devices that can be used in various application domains such as gaming, education. This article discusses the parts in which the EEG has been applied and how it has proven beneficial for those with severe motor disorders, rehabilitation, and as a form of communicating with the outside world. This article examines the use of the SVM, k-NN, and decision tree algorithms to classify EEG signals. To minimize the complexity of the data, maximum overlap discrete wavelet transform (MODWT) is used to extract EEG features. The mean inside each window sample is calculated using the Sliding Window Technique. The vector machine (SVM), k-Nearest Neighbor, and optimize decision tree load the feature vectors.
Balance is considered one of the most important components of physical activity in individual and team sports because it allows proper motor response and performance accuracy. The problem of the research lies in the lack of model for motor balance tests in the field of sports that require different positions and movements for classifying, selecting, diagnosing, and comparing athletes. The importance of the research lies in designing a test for motor balance as a reference for specialists in the field of sports and sport sciences. The subjects were first year College of physical education and sport sciences students / Baghdad University 2016 – 2017. The data was collected and treated using proper statistical operations. The researchers con
... Show MoreAn Intelligent Internet of Things network based on an Artificial Intelligent System, can substantially control and reduce the congestion effects in the network. In this paper, an artificial intelligent system is proposed for eliminating the congestion effects in traffic load in an Intelligent Internet of Things network based on a deep learning Convolutional Recurrent Neural Network with a modified Element-wise Attention Gate. The invisible layer of the modified Element-wise Attention Gate structure has self-feedback to increase its long short-term memory. The artificial intelligent system is implemented for next step ahead traffic estimation and clustering the network. In the proposed architecture, each sensing node is adaptive and able to
... Show MoreThis paper presents a new algorithm in an important research field which is the semantic word similarity estimation. A new feature-based algorithm is proposed for measuring the word semantic similarity for the Arabic language. It is a highly systematic language where its words exhibit elegant and rigorous logic. The score of sematic similarity between two Arabic words is calculated as a function of their common and total taxonomical features. An Arabic knowledge source is employed for extracting the taxonomical features as a set of all concepts that subsumed the concepts containing the compared words. The previously developed Arabic word benchmark datasets are used for optimizing and evaluating the proposed algorithm. In this paper,
... Show MoreElectromyogram (EMG)-based Pattern Recognition (PR) systems for upper-limb prosthesis control provide promising ways to enable an intuitive control of the prostheses with multiple degrees of freedom and fast reaction times. However, the lack of robustness of the PR systems may limit their usability. In this paper, a novel adaptive time windowing framework is proposed to enhance the performance of the PR systems by focusing on their windowing and classification steps. The proposed framework estimates the output probabilities of each class and outputs a movement only if a decision with a probability above a certain threshold is achieved. Otherwise (i.e., all probability values are below the threshold), the window size of the EMG signa
... Show MoreHR Ghanim, GA Abdulhassan, International Journal of Early Childhood Special Education, 2022
Survival analysis is widely applied in data describing for the life time of item until the occurrence of an event of interest such as death or another event of understudy . The purpose of this paper is to use the dynamic approach in the deep learning neural network method, where in this method a dynamic neural network that suits the nature of discrete survival data and time varying effect. This neural network is based on the Levenberg-Marquardt (L-M) algorithm in training, and the method is called Proposed Dynamic Artificial Neural Network (PDANN). Then a comparison was made with another method that depends entirely on the Bayes methodology is called Maximum A Posterior (MAP) method. This method was carried out using numerical algorithms re
... Show MoreWith the wide developments of computer applications and networks, the security of information has high attention in our common fields of life. The most important issues is how to control and prevent unauthorized access to secure information, therefore this paper presents a combination of two efficient encryption algorithms to satisfy the purpose of information security by adding a new level of encryption in Rijndael-AES algorithm. This paper presents a proposed Rijndael encryption and decryption process with NTRU algorithm, Rijndael algorithm is widely accepted due to its strong encryption, and complex processing as well as its resistance to brute force attack. The proposed modifications are implemented by encryption and decryption Rijndael
... Show MoreWith the wide developments of computer science and applications of networks, the security of information must be increased and make it more complex. The most important issues is how to control and prevent unauthorized access to secure information, therefore this paper presents a combination of two efficient encryption algorithms to satisfy the purpose of information security by adding a new level of encryption in Rijndael-AES algorithm. This paper presents a proposed Rijndael encryption and decryption process with NTRU algorithm, Rijndael algorithm is important because of its strong encryption. The proposed updates are represented by encryption and decryption Rijndael S-Box using NTRU algorithm. These modifications enhance the degree of
... Show More