<span>One of the main difficulties facing the certified documents documentary archiving system is checking the stamps system, but, that stamps may be contains complex background and surrounded by unwanted data. Therefore, the main objective of this paper is to isolate background and to remove noise that may be surrounded stamp. Our proposed method comprises of four phases, firstly, we apply k-means algorithm for clustering stamp image into a number of clusters and merged them using ISODATA algorithm. Secondly, we compute mean and standard deviation for each remaining cluster to isolate background cluster from stamp cluster. Thirdly, a region growing algorithm is applied to segment the image and then choosing the connected region to produce a binary mask for the stamp area. Finally, the binary mask is combined with the original image to extract the stamp regions. The results indicate that the number of clusters can be determined dynamically and the largest cluster that has minimum standard deviation (i.e., always the largest cluster is the background cluster). Also, show that the binary mask can be established from more than one segment to cover are all stamp’s disconnected pieces and it can be useful to remove the noise appear with stamp region.</span>
E-mail is an efficient and reliable data exchange service. Spams are undesired e-mail messages which are randomly sent in bulk usually for commercial aims. Obfuscated image spamming is one of the new tricks to bypass text-based and Optical Character Recognition (OCR)-based spam filters. Image spam detection based on image visual features has the advantage of efficiency in terms of reducing the computational cost and improving the performance. In this paper, an image spam detection schema is presented. Suitable image processing techniques were used to capture the image features that can differentiate spam images from non-spam ones. Weighted k-nearest neighbor, which is a simple, yet powerful, machine learning algorithm, was used as a clas
... Show MoreThis paper deals with modelling and control of Euler-Bernoulli smart beam interacting with a fluid medium. Several distributed piezo-patches (actuators and/or sensors) are bonded on the surface of the target beam. To model the vibrating beam properly, the effect of the piezo-patches and the hydrodynamic loads should be taken into account carefully. The partial differential equation PDE for the target oscillating beam is derived considering the piezo-actuators as input controls. Fluid forces are decomposed into two components: 1) hydrodynamic forces due to the beam oscillations, and 2) external (disturbance) hydrodynamic loads independent of beam motion. Then the PDE is discretized usi
The definition of the role of any institution in society is achieved through its objectives, The same is true for the military and how to deal with security threats in the humanitarian field ,Terrorism, which has almost replaced the traditional pattern of war, has waged a street war and intimidated individuals, families and society ,On the other hand, he found someone to meet him from a popular crowd of volunteers to defend their homeland from different sects, sects and religions, Thus, our study will be exposed to the role of popular mobilization in human security from a sociological point of view in Samarra, a field study of 100 male and female respondents.
Social media and networks rely heavily on images. Those images should be distributed in a private manner. Image encryption is therefore one of the most crucial components of cyber security. In the present study, an effective image encryption technique is developed that combines the Rabbit Algorithm, a simple algorithm, with the Attractor of Aizawa, a chaotic map. The lightweight encryption algorithm (Rabbit Algorithm), which is a 3D dynamic system, is made more secure by the Attractor of Aizawa. The process separates color images into blocks by first dividing them into bands of red, green, and blue (RGB). The presented approach generates multiple keys, or sequences, based on the initial parameters and conditions, which are
... Show MoreOptimization is essentially the art, science and mathematics of choosing the best among a given set of finite or infinite alternatives. Though currently optimization is an interdisciplinary subject cutting through the boundaries of mathematics, economics, engineering, natural sciences, and many other fields of human Endeavour it had its root in antiquity. In modern day language the problem mathematically is as follows - Among all closed curves of a given length find the one that closes maximum area. This is called the Isoperimetric problem. This problem is now mentioned in a regular fashion in any course in the Calculus of Variations. However, most problems of antiquity came from geometry and since there were no general methods to solve suc
... Show More