The regular job of a reservoir engineer is to put a development plan to increase hydrocarbon production as possible and within economic and technical considerations. The development strategy for the giant reservoir is a complex and challenging task through the decision-making analysis process. Due to the limited surface water treatment facility, the reservoir management team focuses on minimizing water cut as low as possible by check the flow of formation and injected water movement through the Mishrif reservoir. In this research, a representative sector was used to make the review of water injection configuration, which is considered an efficient tool to make study in a particular area of the entire field when compared with the full-field model on the basis of time-consuming and computational analysis. The sector model was neighboring by extra grid blocks and three pseudo wells as injector wells to realize the pressure on the sector boundary, which attained an acceptable history matching. The fluid model and physics model were introduced by using Pressure Volume Temperature data of well involved in the study area and two relative permeability curves. Fourteen wells were utilized in this work, four wells are injectors, and the rest are producer. The development scenarios were implemented by setting various targets of oil production and different water injection rates required for pressure maintenance operations. Optimization of water cut has been applied by adjustment of production and injection rates and shut off the high water cut intervals. The results obtained from this study showed that the inverted 9-spot has a good recovery which is illustrated in the case_2C, the production rate was (49,000 STB/D) with minimum water cut (27.5%) as compared with a five-spot pattern.
Addition chloro acetyl isothiocyanate (C3H2ClNOS) with 3-Aminoaceto phenone (C8H9NO) to prepare a fresh Ligand [N-(3-acetyl phenyl carbamothioyl)-2-chloroacetamide](L). The ligand (L) behaves as bidentate coordinating through O and S donor with metal ions, the general formula of all complexes [M(L)2(Cl)2](M+2 = Manganese(II), Cobalt(II), Cadmium(II) and Mercury(II)). Compounds were investigation by Proton-1, Carbon -13 NMR spectra (ligand (L) only), Element Microanalysis for C, N, H, O, S, Fourier-transform infrared, UV visible, Conductance
This work involves synthesis of some new heterocyclic compounds including 1, 3-diazetine. The new Schiff bases [VI] ad derived from 3-((5-hydrazinyl-4-phenyl-4H-1, 2, 4-triazol-3-yl) methyl)-1H-indole [V] which was synthesized by refluxing 5-((1H-indol-3-yl) methyl)-4-phenyl-4H-1, 2, 4-triazole-3-thiol [IV] with hydrazine hydrate in absolute ethanol and this amino compound [V] condensation with different aromatic aldehydes in absolute ethanol to yielded a new Schiff bases [VI] ad. N-acyl compounds [VII] ad were synthesized by addition reaction of acetyl chloride to imine group of Schiff bases in dry benzene. The new diazetine derivatives [VIII] ad synthesized by the reaction of N-acyl compounds [VII] ad with sodium azide in dimethylformamid
... Show MoreThe compound [L] was produced in the current study through the reaction of 4-aminoacetophenon with 4-methoxyaniline in the cold, concentrated HCl with 10% NaNO2. Curcumin, several transition metal complexes (Ni (II), La (III), and Hg (II)), and compound [L] were combined in EtOH to create new complexes. UV-vis spectroscopy, FTIR, AA, TGA-DSC, conductivity, chloride content, and elemental analysis (CHNS) were used to describe the structure of produced complexes. Biological activities against fungi, S. aureus (G+), Pseudomonas (G-), E. coli (G-), and Proteus (G-) were demonstrated using complexes. Depending on the outcomes of the aforementioned methods, octahedral formulas were given as the geometrical structures for each created comp
... Show MoreThe complexes of the 2-hydroxy-4-Nitro phenyl piperonalidene with metal ions Cr(III), Ni(II), Pt(IV) and Zn(II) were prepared in ethanolic solution. These complexes were characterized by spectroscopic methods, conductivity, metal analyses and magnetic moment measurements. The nature of the complexes formed in ethanolic solution was study following the molar ratio method. From the spectral studies, monomer structures proposed for the nickel (II) and Zinc (II) complexes while dimeric structures for the chromium (III) and platinum (IV) were proposed. Octahedral geometry was suggested for all prepared complexes except zinc (II) has tetrahedral geometry, Structural geometries of these compounds were also suggested in gas phase by using
... Show MoreEthylenediamine was reacted in the first step with 2,5 – hexandion to produce the precursor [A] , then [A] was reacted with diethylmalonate to give the new tetradentate macrocyclic Ligand [H2L].This Ligand was reacted with some metal ions in ethanol to give a series of new metal complexes of the general formula [M(HnL)X]m ( where : M= CrIII , n = 0 , X= Cl2 , m= -1 ; M = MnII , FeII , NiII , CuII , n = 1 , X= Cl2 , m = -1 ; M = CoII , n = 0 , X = Cl , m = -1 ; M = PdII , n = 0 , X=0 , m = 0 ; M = CdII , n = 2 , X = 0 , m = +2 . All compounds were characterize
... Show MoreThis work represents the preparation of the starting material, 3-chloro-2-oxo-1,4-dithiacyclohexane (S) using a new method. This material was reacted with, 4-phenylthiosemicarbazide to give (H3NS3) as a tetradentate ligand H3L. New complex of rhenium (V) with this ligand of the formula [ReO(L)] was prepared. New complexes of the general formula [M(HL)] of this ligand when reacted with some metal ions where: M = Ni(II), Cu(II), Cd(II), Zn(II), Hg(II) have been reported. The ligand and the complexes were characterized by infrared, ultraviolet–visible, mass, 1H nuclear magnetic resonance and atomic absorption spectroscopic techniques and by (HPLC), elemental analysis, and electrical conductivity. The proposed structure for H3L with Re (V) i
... Show MoreThe reaction of 2-amino benzoic acid with 1,2-dichloroethane under reflux in methanol and KOH as a base to gave the precursor [H4L]. The precursor under reflux and drops of CH3COOH which reacted with (2mole) from salicycaldehyde in methanol to gave a new type N2O4 ligand [H2L], this ligand was reacted with (MCl2) Where [M= Co (II), Ni(II), Cu(II) and Zn(II)] in (1:1) ratio at reflux in methanol using KOH as a base, to give complexes of the general formula [M(L)]. All compounds have been characterized by spectroscopic methods [1H NMR ( just to the ligand), FTIR, uv-vis, atomic absorption], melting point, conductivity, chloride content, as well as m
... Show MoreThe reaction of 2-amino benzoic acid with 1,2-dichloroethane under reflux in methanol and KOH as a base to gave the precursor [H4L]. The precursor under reflux and drops of CH3COOH which reacted with (2mole) from salicycaldehyde in methanol to gave a new type N2O4 ligand [H2L], this ligand was reacted with (MCl2) Where [M= Co (II), Ni(II), Cu(II) and Zn(II)] in (1:1) ratio at reflux in methanol using KOH as a base, to give complexes of the general formula [M(L)]. All compounds have been characterized by spectroscopic methods [1H NMR ( just to the ligand), FTIR, uv-vis, atomic absorption], melting point, conductivity, chloride content, as well as magnetic susceptibility measurements. From the above data, the proposed molecular structu
... Show MoreLimitations of the conventional diagnostic techniques urged researchers to seek novel methods to predict, diagnose, and monitor periodontal disease. Use of the biomarkers available in oral fluids could be a revolutionary surrogate for the manual probing/diagnostic radiograph. Several salivary biomarkers have the potential to accurately discriminate periodontal health and disease. This study aimed to determine the diagnostic sensitivity and specificity of salivary interleukin (IL)‐17, receptor activator of nuclear factor‐κB ligand (RANKL), osteoprotegerin (OPG), RANKL/OPG for differentiating (1) periodontal health from disease and (2) stable a