In this paper, we show that each soft topological group is a strong small soft loop transfer space at the identity element. This indicates that the soft quasitopological fundamental group of a soft connected and locally soft path connected space, is a soft topological group.
In this paper we recall the definition of fuzzy length space on a fuzzy set after that we recall basic definitions and properties of fuzzy length. We define fuzzy bounded operator as an introduction to defined fuzzy length of an operator then we proved that the fuzzy length space FB ̃ ̃ consisting of all fuzzy bounded linear operators from a fuzzy length space ̃ into a fuzzy length space ̃ is fuzzy complete if ̃ is fuzzy complete. Also we proved that every finite dimensional fuzzy length space is fuzzy complete.
The present study focused mainly on the analysis of stiffened and unstiffened composite laminated plates subjected to buckling load. Analytical, numerical and experimental analysis for different cases has been considered. The experimental investigation is to manufacture the laminates and to find mechanical properties of glass-polyester such as longitudinal, transverse young modulus, shear modulus. The compressive test was carried to find the critical buckling load of plate. The design parameters of the laminates such as aspect ratio, thickness ratio, boundary conditions and number of stiffeners were investigated using high order shear deformation theory (HOST) and Finite element coded by ANSYS .The main conclusion was the buckling load c
... Show MoreNumerical simulation of charge density produced in plasma actuators is dependent upon the development of models dealing with electrical properties. The main aim of this work is to investigate the characteristics surface charge density and space charge density of DBD plasma actuator. A simple design of surface dielectric barrier discharge plasma actuator is used in the study. The discharge gas was N2:H2 mixture with applied voltage equal to 1.5 kV. A theoretical plasma model is used to establish the charge density details. Results show that surface charge density increased in value and spread in width alone the exposed electrode as the voltage increased and reached to the amplitude value.
The concept of -closedness, a kind of covering property for topological spaces, has already been studied with meticulous care from different angles and via different approaches. In this paper, we continue the said investigation in terms of a different concept viz. grills. The deliberations in the article include certain characterizations and a few necessary conditions for the -closedness of a space, the latter conditions are also shown to be equivalent to -closedness in a - almost regular space. All these and the associated discussions and results are done with grills as the prime supporting tool.
According to the theory of regular geometric functions, the relevance of geometry to analysis is a critical feature. One of the significant tools to study operators is to utilize the convolution product. The dynamic techniques of convolution have attracted numerous complex analyses in current research. In this effort, an attempt is made by utilizing the said techniques to study a new linear complex operator connecting an incomplete beta function and a Hurwitz–Lerch zeta function of certain meromorphic functions. Furthermore, we employ a method based on the first-order differential subordination to derive new and better differential complex inequalities, namely differential subordinations.
The increasing use of polymeric materials in the daily life, leads to challenges in the processing industry to deliver high performance materials with affordable terms. However, new processing techniques lead to high costs. In order to reduce processing costs it is necessary to understand the non-Newtonian behavior of the polymers in their molten state to be able to simulate the processes before the construction of the plants starts. Here the shear thinning behavior of the viscosity of polymeric melts is essential. Thus, this paper deals with the experimental investigation of the thermo-rheological behavior of the viscosity of one of the most used polymers (Polypropylene) over a wide range of temperatures and shear rates. Furthermo
... Show MoreThe analysis of survival and reliability considered of topics and methods of vital statistics at the present time because of their importance in the various demographical, medical, industrial and engineering fields. This research focused generate random data for samples from the probability distribution Generalized Gamma: GG, known as: "Inverse Transformation" Method: ITM, which includes the distribution cycle integration function incomplete Gamma integration making it more difficult classical estimation so will be the need to illustration to the method of numerical approximation and then appreciation of the function of survival function. It was estimated survival function by simulation the way "Monte Carlo". The Entropy method used for the
... Show MoreIn this paper, Bayes estimators for the shape and scale parameters of Weibull distribution have been obtained using the generalized weighted loss function, based on Exponential priors. Lindley’s approximation has been used effectively in Bayesian estimation. Based on theMonte Carlo simulation method, those estimators are compared depending on the mean squared errors (MSE’s).